Metamath Proof Explorer


Theorem cdleme3fN

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . TODO: Delete - duplicates cdleme0e . (Contributed by NM, 6-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme1.l ˙ = K
cdleme1.j ˙ = join K
cdleme1.m ˙ = meet K
cdleme1.a A = Atoms K
cdleme1.h H = LHyp K
cdleme1.u U = P ˙ Q ˙ W
cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
cdleme3.3 V = P ˙ R ˙ W
Assertion cdleme3fN K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q U V

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙ = K
2 cdleme1.j ˙ = join K
3 cdleme1.m ˙ = meet K
4 cdleme1.a A = Atoms K
5 cdleme1.h H = LHyp K
6 cdleme1.u U = P ˙ Q ˙ W
7 cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 cdleme3.3 V = P ˙ R ˙ W
9 1 2 3 4 5 6 8 cdleme0e K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q U V