Metamath Proof Explorer


Theorem cdleme3fa

Description: Part of proof of Lemma E in Crawley p. 113. See cdleme3 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses cdleme1.l ˙ = K
cdleme1.j ˙ = join K
cdleme1.m ˙ = meet K
cdleme1.a A = Atoms K
cdleme1.h H = LHyp K
cdleme1.u U = P ˙ Q ˙ W
cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
Assertion cdleme3fa K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F A

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙ = K
2 cdleme1.j ˙ = join K
3 cdleme1.m ˙ = meet K
4 cdleme1.a A = Atoms K
5 cdleme1.h H = LHyp K
6 cdleme1.u U = P ˙ Q ˙ W
7 cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 eqid P ˙ R ˙ W = P ˙ R ˙ W
9 1 2 3 4 5 6 7 8 cdleme3h K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F A