Metamath Proof Explorer


Theorem cdleme4

Description: Part of proof of Lemma E in Crawley p. 113. F and G represent f(s) and f_s(r). Here show p \/ q = r \/ u at the top of p. 114. (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙ = K
cdleme4.j ˙ = join K
cdleme4.m ˙ = meet K
cdleme4.a A = Atoms K
cdleme4.h H = LHyp K
cdleme4.u U = P ˙ Q ˙ W
Assertion cdleme4 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q P ˙ Q = R ˙ U

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙ = K
2 cdleme4.j ˙ = join K
3 cdleme4.m ˙ = meet K
4 cdleme4.a A = Atoms K
5 cdleme4.h H = LHyp K
6 cdleme4.u U = P ˙ Q ˙ W
7 6 oveq2i R ˙ U = R ˙ P ˙ Q ˙ W
8 simp1l K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q K HL
9 simp23l K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q R A
10 simp21 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q P A
11 simp22 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q Q A
12 eqid Base K = Base K
13 12 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
14 8 10 11 13 syl3anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q P ˙ Q Base K
15 simp1r K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q W H
16 12 5 lhpbase W H W Base K
17 15 16 syl K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q W Base K
18 simp3 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q R ˙ P ˙ Q
19 12 1 2 3 4 atmod3i1 K HL R A P ˙ Q Base K W Base K R ˙ P ˙ Q R ˙ P ˙ Q ˙ W = P ˙ Q ˙ R ˙ W
20 8 9 14 17 18 19 syl131anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q R ˙ P ˙ Q ˙ W = P ˙ Q ˙ R ˙ W
21 simp1 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q K HL W H
22 simp23 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q R A ¬ R ˙ W
23 eqid 1. K = 1. K
24 1 2 23 4 5 lhpjat2 K HL W H R A ¬ R ˙ W R ˙ W = 1. K
25 21 22 24 syl2anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q R ˙ W = 1. K
26 25 oveq2d K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q P ˙ Q ˙ R ˙ W = P ˙ Q ˙ 1. K
27 hlol K HL K OL
28 8 27 syl K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q K OL
29 12 3 23 olm11 K OL P ˙ Q Base K P ˙ Q ˙ 1. K = P ˙ Q
30 28 14 29 syl2anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q P ˙ Q ˙ 1. K = P ˙ Q
31 20 26 30 3eqtrd K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q R ˙ P ˙ Q ˙ W = P ˙ Q
32 7 31 eqtr2id K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q P ˙ Q = R ˙ U