Metamath Proof Explorer


Theorem cdleme41sn3aw

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(r) is different on and off the P .\/ Q line. TODO: FIX COMMENT. (Contributed by NM, 18-Mar-2013)

Ref Expression
Hypotheses cdleme41.b B = Base K
cdleme41.l ˙ = K
cdleme41.j ˙ = join K
cdleme41.m ˙ = meet K
cdleme41.a A = Atoms K
cdleme41.h H = LHyp K
cdleme41.u U = P ˙ Q ˙ W
cdleme41.d D = s ˙ U ˙ Q ˙ P ˙ s ˙ W
cdleme41.e E = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdleme41.g G = P ˙ Q ˙ E ˙ s ˙ t ˙ W
cdleme41.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = G
cdleme41.n N = if s ˙ P ˙ Q I D
Assertion cdleme41sn3aw K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S R / s N S / s N

Proof

Step Hyp Ref Expression
1 cdleme41.b B = Base K
2 cdleme41.l ˙ = K
3 cdleme41.j ˙ = join K
4 cdleme41.m ˙ = meet K
5 cdleme41.a A = Atoms K
6 cdleme41.h H = LHyp K
7 cdleme41.u U = P ˙ Q ˙ W
8 cdleme41.d D = s ˙ U ˙ Q ˙ P ˙ s ˙ W
9 cdleme41.e E = t ˙ U ˙ Q ˙ P ˙ t ˙ W
10 cdleme41.g G = P ˙ Q ˙ E ˙ s ˙ t ˙ W
11 cdleme41.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = G
12 cdleme41.n N = if s ˙ P ˙ Q I D
13 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
14 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S P Q
15 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S R A ¬ R ˙ W
16 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S R ˙ P ˙ Q
17 eqid P ˙ Q ˙ E ˙ R ˙ t ˙ W = P ˙ Q ˙ E ˙ R ˙ t ˙ W
18 eqid ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = P ˙ Q ˙ E ˙ R ˙ t ˙ W = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = P ˙ Q ˙ E ˙ R ˙ t ˙ W
19 1 2 3 4 5 6 7 8 9 10 11 12 17 18 cdleme41sn3a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W R ˙ P ˙ Q R / s N ˙ P ˙ Q
20 13 14 15 16 19 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S R / s N ˙ P ˙ Q
21 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S S A ¬ S ˙ W
22 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S ¬ S ˙ P ˙ Q
23 1 2 3 4 5 6 7 8 12 cdleme35sn3a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q S A ¬ S ˙ W ¬ S ˙ P ˙ Q ¬ S / s N ˙ P ˙ Q
24 13 14 21 22 23 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S ¬ S / s N ˙ P ˙ Q
25 nbrne2 R / s N ˙ P ˙ Q ¬ S / s N ˙ P ˙ Q R / s N S / s N
26 20 24 25 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S R / s N S / s N