Metamath Proof Explorer


Theorem cdleme42a

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 3-Mar-2013)

Ref Expression
Hypotheses cdleme42.b B = Base K
cdleme42.l ˙ = K
cdleme42.j ˙ = join K
cdleme42.m ˙ = meet K
cdleme42.a A = Atoms K
cdleme42.h H = LHyp K
cdleme42.v V = R ˙ S ˙ W
Assertion cdleme42a K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S = R ˙ V

Proof

Step Hyp Ref Expression
1 cdleme42.b B = Base K
2 cdleme42.l ˙ = K
3 cdleme42.j ˙ = join K
4 cdleme42.m ˙ = meet K
5 cdleme42.a A = Atoms K
6 cdleme42.h H = LHyp K
7 cdleme42.v V = R ˙ S ˙ W
8 eqid 1. K = 1. K
9 2 3 8 5 6 lhpjat2 K HL W H R A ¬ R ˙ W R ˙ W = 1. K
10 9 3adant3 K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ W = 1. K
11 10 oveq2d K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S ˙ R ˙ W = R ˙ S ˙ 1. K
12 7 oveq2i R ˙ V = R ˙ R ˙ S ˙ W
13 simp1l K HL W H R A ¬ R ˙ W S A ¬ S ˙ W K HL
14 simp2l K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R A
15 simp3l K HL W H R A ¬ R ˙ W S A ¬ S ˙ W S A
16 1 3 5 hlatjcl K HL R A S A R ˙ S B
17 13 14 15 16 syl3anc K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S B
18 simp1r K HL W H R A ¬ R ˙ W S A ¬ S ˙ W W H
19 1 6 lhpbase W H W B
20 18 19 syl K HL W H R A ¬ R ˙ W S A ¬ S ˙ W W B
21 2 3 5 hlatlej1 K HL R A S A R ˙ R ˙ S
22 13 14 15 21 syl3anc K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ R ˙ S
23 1 2 3 4 5 atmod3i1 K HL R A R ˙ S B W B R ˙ R ˙ S R ˙ R ˙ S ˙ W = R ˙ S ˙ R ˙ W
24 13 14 17 20 22 23 syl131anc K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ R ˙ S ˙ W = R ˙ S ˙ R ˙ W
25 12 24 eqtr2id K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S ˙ R ˙ W = R ˙ V
26 hlol K HL K OL
27 13 26 syl K HL W H R A ¬ R ˙ W S A ¬ S ˙ W K OL
28 1 4 8 olm11 K OL R ˙ S B R ˙ S ˙ 1. K = R ˙ S
29 27 17 28 syl2anc K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S ˙ 1. K = R ˙ S
30 11 25 29 3eqtr3rd K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S = R ˙ V