Metamath Proof Explorer


Theorem cdleme42b

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 6-Mar-2013)

Ref Expression
Hypotheses cdleme41.b B = Base K
cdleme41.l ˙ = K
cdleme41.j ˙ = join K
cdleme41.m ˙ = meet K
cdleme41.a A = Atoms K
cdleme41.h H = LHyp K
cdleme41.u U = P ˙ Q ˙ W
cdleme41.d D = s ˙ U ˙ Q ˙ P ˙ s ˙ W
cdleme41.e E = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdleme41.g G = P ˙ Q ˙ E ˙ s ˙ t ˙ W
cdleme41.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = G
cdleme41.n N = if s ˙ P ˙ Q I D
cdleme41.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
cdleme41.f F = x B if P Q ¬ x ˙ W O x
Assertion cdleme42b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X F X = R / s N ˙ X ˙ W

Proof

Step Hyp Ref Expression
1 cdleme41.b B = Base K
2 cdleme41.l ˙ = K
3 cdleme41.j ˙ = join K
4 cdleme41.m ˙ = meet K
5 cdleme41.a A = Atoms K
6 cdleme41.h H = LHyp K
7 cdleme41.u U = P ˙ Q ˙ W
8 cdleme41.d D = s ˙ U ˙ Q ˙ P ˙ s ˙ W
9 cdleme41.e E = t ˙ U ˙ Q ˙ P ˙ t ˙ W
10 cdleme41.g G = P ˙ Q ˙ E ˙ s ˙ t ˙ W
11 cdleme41.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = G
12 cdleme41.n N = if s ˙ P ˙ Q I D
13 cdleme41.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
14 cdleme41.f F = x B if P Q ¬ x ˙ W O x
15 1 fvexi B V
16 nfv s K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X
17 nfcsb1v _ s R / s N
18 nfcv _ s ˙
19 nfcv _ s X ˙ W
20 17 18 19 nfov _ s R / s N ˙ X ˙ W
21 20 a1i K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X _ s R / s N ˙ X ˙ W
22 nfvd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X s ¬ R ˙ W R ˙ X ˙ W = X
23 eqid ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
24 13 14 23 cdleme31fv1 X B P Q ¬ X ˙ W F X = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
25 24 3ad2ant2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X F X = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
26 breq1 s = R s ˙ W R ˙ W
27 26 notbid s = R ¬ s ˙ W ¬ R ˙ W
28 oveq1 s = R s ˙ X ˙ W = R ˙ X ˙ W
29 28 eqeq1d s = R s ˙ X ˙ W = X R ˙ X ˙ W = X
30 27 29 anbi12d s = R ¬ s ˙ W s ˙ X ˙ W = X ¬ R ˙ W R ˙ X ˙ W = X
31 30 adantl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X s = R ¬ s ˙ W s ˙ X ˙ W = X ¬ R ˙ W R ˙ X ˙ W = X
32 csbeq1a s = R N = R / s N
33 32 oveq1d s = R N ˙ X ˙ W = R / s N ˙ X ˙ W
34 33 adantl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X s = R N ˙ X ˙ W = R / s N ˙ X ˙ W
35 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
36 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X X B
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvcl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B F X B
38 35 36 37 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X F X B
39 simp3ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X R A
40 simp3lr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X ¬ R ˙ W
41 simp3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X R ˙ X ˙ W = X
42 40 41 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X ¬ R ˙ W R ˙ X ˙ W = X
43 16 21 22 25 31 34 38 39 42 riotasv2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X B V F X = R / s N ˙ X ˙ W
44 15 43 mpan2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W R A ¬ R ˙ W R ˙ X ˙ W = X F X = R / s N ˙ X ˙ W