Metamath Proof Explorer


Theorem cdleme42c

Description: Part of proof of Lemma E in Crawley p. 113. Match -. x .<_ W . (Contributed by NM, 6-Mar-2013)

Ref Expression
Hypotheses cdleme42.b B = Base K
cdleme42.l ˙ = K
cdleme42.j ˙ = join K
cdleme42.m ˙ = meet K
cdleme42.a A = Atoms K
cdleme42.h H = LHyp K
cdleme42.v V = R ˙ S ˙ W
Assertion cdleme42c K HL W H R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ V ˙ W

Proof

Step Hyp Ref Expression
1 cdleme42.b B = Base K
2 cdleme42.l ˙ = K
3 cdleme42.j ˙ = join K
4 cdleme42.m ˙ = meet K
5 cdleme42.a A = Atoms K
6 cdleme42.h H = LHyp K
7 cdleme42.v V = R ˙ S ˙ W
8 simp2r K HL W H R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ W
9 simp1l K HL W H R A ¬ R ˙ W S A ¬ S ˙ W K HL
10 9 hllatd K HL W H R A ¬ R ˙ W S A ¬ S ˙ W K Lat
11 simp2l K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R A
12 1 5 atbase R A R B
13 11 12 syl K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R B
14 simp3l K HL W H R A ¬ R ˙ W S A ¬ S ˙ W S A
15 1 3 5 hlatjcl K HL R A S A R ˙ S B
16 9 11 14 15 syl3anc K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S B
17 simp1r K HL W H R A ¬ R ˙ W S A ¬ S ˙ W W H
18 1 6 lhpbase W H W B
19 17 18 syl K HL W H R A ¬ R ˙ W S A ¬ S ˙ W W B
20 1 4 latmcl K Lat R ˙ S B W B R ˙ S ˙ W B
21 10 16 19 20 syl3anc K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S ˙ W B
22 7 21 eqeltrid K HL W H R A ¬ R ˙ W S A ¬ S ˙ W V B
23 1 2 3 latjle12 K Lat R B V B W B R ˙ W V ˙ W R ˙ V ˙ W
24 10 13 22 19 23 syl13anc K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ W V ˙ W R ˙ V ˙ W
25 simpl R ˙ W V ˙ W R ˙ W
26 24 25 syl6bir K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ V ˙ W R ˙ W
27 8 26 mtod K HL W H R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ V ˙ W