Metamath Proof Explorer


Theorem cdleme42d

Description: Part of proof of Lemma E in Crawley p. 113. Match ( s .\/ ( x ./\ W ) ) = x . (Contributed by NM, 6-Mar-2013)

Ref Expression
Hypotheses cdleme42.b B=BaseK
cdleme42.l ˙=K
cdleme42.j ˙=joinK
cdleme42.m ˙=meetK
cdleme42.a A=AtomsK
cdleme42.h H=LHypK
cdleme42.v V=R˙S˙W
Assertion cdleme42d KHLWHRA¬R˙WSA¬S˙WR˙R˙V˙W=R˙V

Proof

Step Hyp Ref Expression
1 cdleme42.b B=BaseK
2 cdleme42.l ˙=K
3 cdleme42.j ˙=joinK
4 cdleme42.m ˙=meetK
5 cdleme42.a A=AtomsK
6 cdleme42.h H=LHypK
7 cdleme42.v V=R˙S˙W
8 7 oveq2i R˙V=R˙R˙S˙W
9 1 2 3 4 5 6 7 cdleme42a KHLWHRA¬R˙WSA¬S˙WR˙S=R˙V
10 9 oveq1d KHLWHRA¬R˙WSA¬S˙WR˙S˙W=R˙V˙W
11 10 oveq2d KHLWHRA¬R˙WSA¬S˙WR˙R˙S˙W=R˙R˙V˙W
12 8 11 eqtr2id KHLWHRA¬R˙WSA¬S˙WR˙R˙V˙W=R˙V