Metamath Proof Explorer


Theorem cdleme42d

Description: Part of proof of Lemma E in Crawley p. 113. Match ( s .\/ ( x ./\ W ) ) = x . (Contributed by NM, 6-Mar-2013)

Ref Expression
Hypotheses cdleme42.b B = Base K
cdleme42.l ˙ = K
cdleme42.j ˙ = join K
cdleme42.m ˙ = meet K
cdleme42.a A = Atoms K
cdleme42.h H = LHyp K
cdleme42.v V = R ˙ S ˙ W
Assertion cdleme42d K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ R ˙ V ˙ W = R ˙ V

Proof

Step Hyp Ref Expression
1 cdleme42.b B = Base K
2 cdleme42.l ˙ = K
3 cdleme42.j ˙ = join K
4 cdleme42.m ˙ = meet K
5 cdleme42.a A = Atoms K
6 cdleme42.h H = LHyp K
7 cdleme42.v V = R ˙ S ˙ W
8 7 oveq2i R ˙ V = R ˙ R ˙ S ˙ W
9 1 2 3 4 5 6 7 cdleme42a K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S = R ˙ V
10 9 oveq1d K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ S ˙ W = R ˙ V ˙ W
11 10 oveq2d K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ R ˙ S ˙ W = R ˙ R ˙ V ˙ W
12 8 11 eqtr2id K HL W H R A ¬ R ˙ W S A ¬ S ˙ W R ˙ R ˙ V ˙ W = R ˙ V