Metamath Proof Explorer


Theorem cdleme42h

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 8-Mar-2013)

Ref Expression
Hypotheses cdleme41.b B = Base K
cdleme41.l ˙ = K
cdleme41.j ˙ = join K
cdleme41.m ˙ = meet K
cdleme41.a A = Atoms K
cdleme41.h H = LHyp K
cdleme41.u U = P ˙ Q ˙ W
cdleme41.d D = s ˙ U ˙ Q ˙ P ˙ s ˙ W
cdleme41.e E = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdleme41.g G = P ˙ Q ˙ E ˙ s ˙ t ˙ W
cdleme41.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = G
cdleme41.n N = if s ˙ P ˙ Q I D
cdleme41.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
cdleme41.f F = x B if P Q ¬ x ˙ W O x
cdleme34e.v V = R ˙ S ˙ W
Assertion cdleme42h K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F S ˙ F R ˙ V

Proof

Step Hyp Ref Expression
1 cdleme41.b B = Base K
2 cdleme41.l ˙ = K
3 cdleme41.j ˙ = join K
4 cdleme41.m ˙ = meet K
5 cdleme41.a A = Atoms K
6 cdleme41.h H = LHyp K
7 cdleme41.u U = P ˙ Q ˙ W
8 cdleme41.d D = s ˙ U ˙ Q ˙ P ˙ s ˙ W
9 cdleme41.e E = t ˙ U ˙ Q ˙ P ˙ t ˙ W
10 cdleme41.g G = P ˙ Q ˙ E ˙ s ˙ t ˙ W
11 cdleme41.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = G
12 cdleme41.n N = if s ˙ P ˙ Q I D
13 cdleme41.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
14 cdleme41.f F = x B if P Q ¬ x ˙ W O x
15 cdleme34e.v V = R ˙ S ˙ W
16 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q K HL
17 16 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q K Lat
18 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
19 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q S A
20 1 5 atbase S A S B
21 19 20 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q S B
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvcl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S B F S B
23 18 21 22 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F S B
24 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R A
25 1 3 5 hlatjcl K HL R A S A R ˙ S B
26 16 24 19 25 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ S B
27 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q W H
28 1 6 lhpbase W H W B
29 27 28 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q W B
30 1 4 latmcl K Lat R ˙ S B W B R ˙ S ˙ W B
31 17 26 29 30 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ S ˙ W B
32 15 31 eqeltrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q V B
33 1 2 3 latlej1 K Lat F S B V B F S ˙ F S ˙ V
34 17 23 32 33 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F S ˙ F S ˙ V
35 3 5 hlatjcom K HL R A S A R ˙ S = S ˙ R
36 16 24 19 35 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ S = S ˙ R
37 36 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ S ˙ W = S ˙ R ˙ W
38 15 37 syl5eq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q V = S ˙ R ˙ W
39 38 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F S ˙ V = F S ˙ S ˙ R ˙ W
40 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q S A ¬ S ˙ W
41 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R A ¬ R ˙ W
42 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q P Q
43 eqid S ˙ R ˙ W = S ˙ R ˙ W
44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 43 cdleme42g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A ¬ R ˙ W P Q F S ˙ R = F S ˙ S ˙ R ˙ W
45 18 40 41 42 44 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F S ˙ R = F S ˙ S ˙ R ˙ W
46 39 45 eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F S ˙ V = F S ˙ R
47 36 fveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F R ˙ S = F S ˙ R
48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cdleme42g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F R ˙ S = F R ˙ V
49 46 47 48 3eqtr2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F S ˙ V = F R ˙ V
50 34 49 breqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q F S ˙ F R ˙ V