Metamath Proof Explorer


Theorem cdleme46frvlpq

Description: Show that ( FS ) is not under P .\/ Q when S isn't. (Contributed by NM, 1-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B = Base K
cdlemef46.l ˙ = K
cdlemef46.j ˙ = join K
cdlemef46.m ˙ = meet K
cdlemef46.a A = Atoms K
cdlemef46.h H = LHyp K
cdlemef46.u U = P ˙ Q ˙ W
cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
Assertion cdleme46frvlpq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q S A ¬ S ˙ W ¬ S ˙ P ˙ Q ¬ F S ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemef46.b B = Base K
2 cdlemef46.l ˙ = K
3 cdlemef46.j ˙ = join K
4 cdlemef46.m ˙ = meet K
5 cdlemef46.a A = Atoms K
6 cdlemef46.h H = LHyp K
7 cdlemef46.u U = P ˙ Q ˙ W
8 cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 eqid S ˙ U ˙ Q ˙ P ˙ S ˙ W = S ˙ U ˙ Q ˙ P ˙ S ˙ W
12 2 3 4 5 6 7 11 cdleme35fnpq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q S A ¬ S ˙ W ¬ S ˙ P ˙ Q ¬ S ˙ U ˙ Q ˙ P ˙ S ˙ W ˙ P ˙ Q
13 1 2 3 4 5 6 7 8 10 cdlemefr45e K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q S A ¬ S ˙ W ¬ S ˙ P ˙ Q F S = S ˙ U ˙ Q ˙ P ˙ S ˙ W
14 13 breq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q S A ¬ S ˙ W ¬ S ˙ P ˙ Q F S ˙ P ˙ Q S ˙ U ˙ Q ˙ P ˙ S ˙ W ˙ P ˙ Q
15 12 14 mtbird K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q S A ¬ S ˙ W ¬ S ˙ P ˙ Q ¬ F S ˙ P ˙ Q