Metamath Proof Explorer


Theorem cdleme46fvaw

Description: Show that ( FR ) is an atom not under W when R is an atom not under W . (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B = Base K
cdlemef46.l ˙ = K
cdlemef46.j ˙ = join K
cdlemef46.m ˙ = meet K
cdlemef46.a A = Atoms K
cdlemef46.h H = LHyp K
cdlemef46.u U = P ˙ Q ˙ W
cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
Assertion cdleme46fvaw K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F R A ¬ F R ˙ W

Proof

Step Hyp Ref Expression
1 cdlemef46.b B = Base K
2 cdlemef46.l ˙ = K
3 cdlemef46.j ˙ = join K
4 cdlemef46.m ˙ = meet K
5 cdlemef46.a A = Atoms K
6 cdlemef46.h H = LHyp K
7 cdlemef46.u U = P ˙ Q ˙ W
8 cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 vex s V
12 eqid s ˙ U ˙ Q ˙ P ˙ s ˙ W = s ˙ U ˙ Q ˙ P ˙ s ˙ W
13 8 12 cdleme31sc s V s / t D = s ˙ U ˙ Q ˙ P ˙ s ˙ W
14 11 13 ax-mp s / t D = s ˙ U ˙ Q ˙ P ˙ s ˙ W
15 eqid ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E
16 eqid if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D
17 eqid ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W
18 1 2 3 4 5 6 7 14 8 9 15 16 17 10 cdleme32fvaw K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F R A ¬ F R ˙ W