Metamath Proof Explorer


Theorem cdleme48fvg

Description: Remove P =/= Q condition in cdleme48fv . TODO: Can this replace uses of cdleme32a ? TODO: Can this be used to help prove the R or S case where X is an atom? TODO: Can this be proved more directly by eliminating P =/= Q in earlier theorems? Should this replace uses of cdleme48fv ? (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B = Base K
cdlemef46.l ˙ = K
cdlemef46.j ˙ = join K
cdlemef46.m ˙ = meet K
cdlemef46.a A = Atoms K
cdlemef46.h H = LHyp K
cdlemef46.u U = P ˙ Q ˙ W
cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
Assertion cdleme48fvg K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X F X = F S ˙ X ˙ W

Proof

Step Hyp Ref Expression
1 cdlemef46.b B = Base K
2 cdlemef46.l ˙ = K
3 cdlemef46.j ˙ = join K
4 cdlemef46.m ˙ = meet K
5 cdlemef46.a A = Atoms K
6 cdlemef46.h H = LHyp K
7 cdlemef46.u U = P ˙ Q ˙ W
8 cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 simpl3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P = Q S ˙ X ˙ W = X
12 simp3ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X S A
13 12 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P = Q S A
14 1 5 atbase S A S B
15 13 14 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P = Q S B
16 10 cdleme31id S B P = Q F S = S
17 15 16 sylancom K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P = Q F S = S
18 17 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P = Q F S ˙ X ˙ W = S ˙ X ˙ W
19 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X X B
20 10 cdleme31id X B P = Q F X = X
21 19 20 sylan K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P = Q F X = X
22 11 18 21 3eqtr4rd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P = Q F X = F S ˙ X ˙ W
23 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P Q K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
24 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P Q P Q
25 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P Q X B ¬ X ˙ W
26 simpl3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P Q S A ¬ S ˙ W S ˙ X ˙ W = X
27 1 2 3 4 5 6 7 8 9 10 cdleme48fv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X F X = F S ˙ X ˙ W
28 23 24 25 26 27 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X P Q F X = F S ˙ X ˙ W
29 22 28 pm2.61dane K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ X ˙ W S A ¬ S ˙ W S ˙ X ˙ W = X F X = F S ˙ X ˙ W