Metamath Proof Explorer


Theorem cdleme48gfv

Description: TODO: fix comment. (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses cdlemef46g.b B = Base K
cdlemef46g.l ˙ = K
cdlemef46g.j ˙ = join K
cdlemef46g.m ˙ = meet K
cdlemef46g.a A = Atoms K
cdlemef46g.h H = LHyp K
cdlemef46g.u U = P ˙ Q ˙ W
cdlemef46g.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs46g.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef46g.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
cdlemef46.v V = Q ˙ P ˙ W
cdlemef46.n N = v ˙ V ˙ P ˙ Q ˙ v ˙ W
cdlemefs46.o O = Q ˙ P ˙ N ˙ u ˙ v ˙ W
cdlemef46.g G = a B if Q P ¬ a ˙ W ι c B | u A ¬ u ˙ W u ˙ a ˙ W = a c = if u ˙ Q ˙ P ι b B | v A ¬ v ˙ W ¬ v ˙ Q ˙ P b = O u / v N ˙ a ˙ W a
Assertion cdleme48gfv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B G F X = X

Proof

Step Hyp Ref Expression
1 cdlemef46g.b B = Base K
2 cdlemef46g.l ˙ = K
3 cdlemef46g.j ˙ = join K
4 cdlemef46g.m ˙ = meet K
5 cdlemef46g.a A = Atoms K
6 cdlemef46g.h H = LHyp K
7 cdlemef46g.u U = P ˙ Q ˙ W
8 cdlemef46g.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs46g.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef46g.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 cdlemef46.v V = Q ˙ P ˙ W
12 cdlemef46.n N = v ˙ V ˙ P ˙ Q ˙ v ˙ W
13 cdlemefs46.o O = Q ˙ P ˙ N ˙ u ˙ v ˙ W
14 cdlemef46.g G = a B if Q P ¬ a ˙ W ι c B | u A ¬ u ˙ W u ˙ a ˙ W = a c = if u ˙ Q ˙ P ι b B | v A ¬ v ˙ W ¬ v ˙ Q ˙ P b = O u / v N ˙ a ˙ W a
15 simpll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
16 simprl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W P Q
17 simplr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W X B
18 simprr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W ¬ X ˙ W
19 17 18 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W X B ¬ X ˙ W
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme48gfv1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q X B ¬ X ˙ W G F X = X
21 15 16 19 20 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W G F X = X
22 10 cdleme31fv2 X B ¬ P Q ¬ X ˙ W F X = X
23 22 adantll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W F X = X
24 simplr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W X B
25 23 24 eqeltrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W F X B
26 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W ¬ P Q ¬ X ˙ W
27 necom Q P P Q
28 27 a1i K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W Q P P Q
29 23 breq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W F X ˙ W X ˙ W
30 29 notbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W ¬ F X ˙ W ¬ X ˙ W
31 28 30 anbi12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W Q P ¬ F X ˙ W P Q ¬ X ˙ W
32 26 31 mtbird K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W ¬ Q P ¬ F X ˙ W
33 14 cdleme31fv2 F X B ¬ Q P ¬ F X ˙ W G F X = F X
34 25 32 33 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W G F X = F X
35 34 23 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W G F X = X
36 21 35 pm2.61dan K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B G F X = X