Metamath Proof Explorer


Theorem cdleme4a

Description: Part of proof of Lemma E in Crawley p. 114 top. G represents f_s(r). Auxiliary lemma derived from cdleme5 . We show f_s(r) <_ p \/ q. (Contributed by NM, 10-Nov-2012)

Ref Expression
Hypotheses cdleme4.l ˙ = K
cdleme4.j ˙ = join K
cdleme4.m ˙ = meet K
cdleme4.a A = Atoms K
cdleme4.h H = LHyp K
cdleme4.u U = P ˙ Q ˙ W
cdleme4.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme4.g G = P ˙ Q ˙ F ˙ R ˙ S ˙ W
Assertion cdleme4a K HL W H P A Q A R A S A G ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙ = K
2 cdleme4.j ˙ = join K
3 cdleme4.m ˙ = meet K
4 cdleme4.a A = Atoms K
5 cdleme4.h H = LHyp K
6 cdleme4.u U = P ˙ Q ˙ W
7 cdleme4.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme4.g G = P ˙ Q ˙ F ˙ R ˙ S ˙ W
9 simp1l K HL W H P A Q A R A S A K HL
10 9 hllatd K HL W H P A Q A R A S A K Lat
11 simp21 K HL W H P A Q A R A S A P A
12 simp22 K HL W H P A Q A R A S A Q A
13 eqid Base K = Base K
14 13 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
15 9 11 12 14 syl3anc K HL W H P A Q A R A S A P ˙ Q Base K
16 simp1r K HL W H P A Q A R A S A W H
17 simp3 K HL W H P A Q A R A S A S A
18 1 2 3 4 5 6 7 13 cdleme1b K HL W H P A Q A S A F Base K
19 9 16 11 12 17 18 syl23anc K HL W H P A Q A R A S A F Base K
20 simp23 K HL W H P A Q A R A S A R A
21 13 2 4 hlatjcl K HL R A S A R ˙ S Base K
22 9 20 17 21 syl3anc K HL W H P A Q A R A S A R ˙ S Base K
23 13 5 lhpbase W H W Base K
24 16 23 syl K HL W H P A Q A R A S A W Base K
25 13 3 latmcl K Lat R ˙ S Base K W Base K R ˙ S ˙ W Base K
26 10 22 24 25 syl3anc K HL W H P A Q A R A S A R ˙ S ˙ W Base K
27 13 2 latjcl K Lat F Base K R ˙ S ˙ W Base K F ˙ R ˙ S ˙ W Base K
28 10 19 26 27 syl3anc K HL W H P A Q A R A S A F ˙ R ˙ S ˙ W Base K
29 13 1 3 latmle1 K Lat P ˙ Q Base K F ˙ R ˙ S ˙ W Base K P ˙ Q ˙ F ˙ R ˙ S ˙ W ˙ P ˙ Q
30 10 15 28 29 syl3anc K HL W H P A Q A R A S A P ˙ Q ˙ F ˙ R ˙ S ˙ W ˙ P ˙ Q
31 8 30 eqbrtrid K HL W H P A Q A R A S A G ˙ P ˙ Q