Metamath Proof Explorer


Theorem cdleme50laut

Description: Part of proof of Lemma D in Crawley p. 113. F is a lattice automorphism. TODO: fix comment. (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses cdlemef50.b B = Base K
cdlemef50.l ˙ = K
cdlemef50.j ˙ = join K
cdlemef50.m ˙ = meet K
cdlemef50.a A = Atoms K
cdlemef50.h H = LHyp K
cdlemef50.u U = P ˙ Q ˙ W
cdlemef50.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs50.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef50.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
cdleme50laut.i I = LAut K
Assertion cdleme50laut K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F I

Proof

Step Hyp Ref Expression
1 cdlemef50.b B = Base K
2 cdlemef50.l ˙ = K
3 cdlemef50.j ˙ = join K
4 cdlemef50.m ˙ = meet K
5 cdlemef50.a A = Atoms K
6 cdlemef50.h H = LHyp K
7 cdlemef50.u U = P ˙ Q ˙ W
8 cdlemef50.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs50.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef50.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 cdleme50laut.i I = LAut K
12 1 2 3 4 5 6 7 8 9 10 cdleme50f1o K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F : B 1-1 onto B
13 1 2 3 4 5 6 7 8 9 10 cdleme50lebi K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d B e B d ˙ e F d ˙ F e
14 13 ralrimivva K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d B e B d ˙ e F d ˙ F e
15 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W K HL
16 1 2 11 islaut K HL F I F : B 1-1 onto B d B e B d ˙ e F d ˙ F e
17 15 16 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F I F : B 1-1 onto B d B e B d ˙ e F d ˙ F e
18 12 14 17 mpbir2and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F I