Metamath Proof Explorer


Theorem cdleme50ldil

Description: Part of proof of Lemma D in Crawley p. 113. F is a lattice dilation. TODO: fix comment. (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses cdlemef50.b B = Base K
cdlemef50.l ˙ = K
cdlemef50.j ˙ = join K
cdlemef50.m ˙ = meet K
cdlemef50.a A = Atoms K
cdlemef50.h H = LHyp K
cdlemef50.u U = P ˙ Q ˙ W
cdlemef50.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs50.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef50.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
cdleme50ldil.i C = LDil K W
Assertion cdleme50ldil K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F C

Proof

Step Hyp Ref Expression
1 cdlemef50.b B = Base K
2 cdlemef50.l ˙ = K
3 cdlemef50.j ˙ = join K
4 cdlemef50.m ˙ = meet K
5 cdlemef50.a A = Atoms K
6 cdlemef50.h H = LHyp K
7 cdlemef50.u U = P ˙ Q ˙ W
8 cdlemef50.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs50.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef50.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 cdleme50ldil.i C = LDil K W
12 eqid LAut K = LAut K
13 1 2 3 4 5 6 7 8 9 10 12 cdleme50laut K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F LAut K
14 simpr P Q ¬ e ˙ W ¬ e ˙ W
15 14 con2i e ˙ W ¬ P Q ¬ e ˙ W
16 10 cdleme31fv2 e B ¬ P Q ¬ e ˙ W F e = e
17 15 16 sylan2 e B e ˙ W F e = e
18 17 ex e B e ˙ W F e = e
19 18 rgen e B e ˙ W F e = e
20 19 a1i K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W e B e ˙ W F e = e
21 1 2 6 12 11 isldil K HL W H F C F LAut K e B e ˙ W F e = e
22 21 3ad2ant1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F C F LAut K e B e ˙ W F e = e
23 13 20 22 mpbir2and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F C