Metamath Proof Explorer


Theorem cdleme50ltrn

Description: Part of proof of Lemma E in Crawley p. 113. F is a lattice translation. TODO: fix comment. (Contributed by NM, 10-Apr-2013)

Ref Expression
Hypotheses cdlemef50.b B = Base K
cdlemef50.l ˙ = K
cdlemef50.j ˙ = join K
cdlemef50.m ˙ = meet K
cdlemef50.a A = Atoms K
cdlemef50.h H = LHyp K
cdlemef50.u U = P ˙ Q ˙ W
cdlemef50.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs50.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef50.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
cdleme50ltrn.t T = LTrn K W
Assertion cdleme50ltrn K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T

Proof

Step Hyp Ref Expression
1 cdlemef50.b B = Base K
2 cdlemef50.l ˙ = K
3 cdlemef50.j ˙ = join K
4 cdlemef50.m ˙ = meet K
5 cdlemef50.a A = Atoms K
6 cdlemef50.h H = LHyp K
7 cdlemef50.u U = P ˙ Q ˙ W
8 cdlemef50.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs50.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef50.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 cdleme50ltrn.t T = LTrn K W
12 eqid LDil K W = LDil K W
13 1 2 3 4 5 6 7 8 9 10 12 cdleme50ldil K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F LDil K W
14 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
15 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W d A
16 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W ¬ d ˙ W
17 1 2 3 4 5 6 7 8 9 10 cdleme50trn123 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A ¬ d ˙ W d ˙ F d ˙ W = U
18 14 15 16 17 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W d ˙ F d ˙ W = U
19 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W e A
20 simp3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W ¬ e ˙ W
21 1 2 3 4 5 6 7 8 9 10 cdleme50trn123 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W e A ¬ e ˙ W e ˙ F e ˙ W = U
22 14 19 20 21 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W e ˙ F e ˙ W = U
23 18 22 eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W d ˙ F d ˙ W = e ˙ F e ˙ W
24 23 3exp K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W d ˙ F d ˙ W = e ˙ F e ˙ W
25 24 ralrimivv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W d A e A ¬ d ˙ W ¬ e ˙ W d ˙ F d ˙ W = e ˙ F e ˙ W
26 2 3 4 5 6 12 11 isltrn K HL W H F T F LDil K W d A e A ¬ d ˙ W ¬ e ˙ W d ˙ F d ˙ W = e ˙ F e ˙ W
27 26 3ad2ant1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F LDil K W d A e A ¬ d ˙ W ¬ e ˙ W d ˙ F d ˙ W = e ˙ F e ˙ W
28 13 25 27 mpbir2and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T