Metamath Proof Explorer


Theorem cdleme50trn3

Description: Part of proof that F is a translation. P = Q case. TODO: fix comment. (Contributed by NM, 10-Apr-2013)

Ref Expression
Hypotheses cdlemef50.b B = Base K
cdlemef50.l ˙ = K
cdlemef50.j ˙ = join K
cdlemef50.m ˙ = meet K
cdlemef50.a A = Atoms K
cdlemef50.h H = LHyp K
cdlemef50.u U = P ˙ Q ˙ W
cdlemef50.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs50.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef50.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
Assertion cdleme50trn3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R ˙ F R ˙ W = U

Proof

Step Hyp Ref Expression
1 cdlemef50.b B = Base K
2 cdlemef50.l ˙ = K
3 cdlemef50.j ˙ = join K
4 cdlemef50.m ˙ = meet K
5 cdlemef50.a A = Atoms K
6 cdlemef50.h H = LHyp K
7 cdlemef50.u U = P ˙ Q ˙ W
8 cdlemef50.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs50.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef50.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W K HL W H
12 simprr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R A ¬ R ˙ W
13 eqid 0. K = 0. K
14 2 4 13 5 6 lhpmat K HL W H R A ¬ R ˙ W R ˙ W = 0. K
15 11 12 14 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R ˙ W = 0. K
16 simprrl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R A
17 1 5 atbase R A R B
18 16 17 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R B
19 simprl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W P = Q
20 10 cdleme31id R B P = Q F R = R
21 18 19 20 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W F R = R
22 21 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R ˙ F R = R ˙ R
23 simpl1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W K HL
24 3 5 hlatjidm K HL R A R ˙ R = R
25 23 16 24 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R ˙ R = R
26 22 25 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R ˙ F R = R
27 26 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R ˙ F R ˙ W = R ˙ W
28 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W P A ¬ P ˙ W
29 2 4 13 5 6 lhpmat K HL W H P A ¬ P ˙ W P ˙ W = 0. K
30 11 28 29 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W P ˙ W = 0. K
31 15 27 30 3eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R ˙ F R ˙ W = P ˙ W
32 simpl2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W P A
33 3 5 hlatjidm K HL P A P ˙ P = P
34 23 32 33 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W P ˙ P = P
35 19 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W P ˙ P = P ˙ Q
36 34 35 eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W P = P ˙ Q
37 36 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W P ˙ W = P ˙ Q ˙ W
38 31 37 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R ˙ F R ˙ W = P ˙ Q ˙ W
39 38 7 eqtr4di K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q R A ¬ R ˙ W R ˙ F R ˙ W = U