Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef50.b |
|
2 |
|
cdlemef50.l |
|
3 |
|
cdlemef50.j |
|
4 |
|
cdlemef50.m |
|
5 |
|
cdlemef50.a |
|
6 |
|
cdlemef50.h |
|
7 |
|
cdlemef50.u |
|
8 |
|
cdlemef50.d |
|
9 |
|
cdlemefs50.e |
|
10 |
|
cdlemef50.f |
|
11 |
|
simpl1 |
|
12 |
|
simprr |
|
13 |
|
eqid |
|
14 |
2 4 13 5 6
|
lhpmat |
|
15 |
11 12 14
|
syl2anc |
|
16 |
|
simprrl |
|
17 |
1 5
|
atbase |
|
18 |
16 17
|
syl |
|
19 |
|
simprl |
|
20 |
10
|
cdleme31id |
|
21 |
18 19 20
|
syl2anc |
|
22 |
21
|
oveq2d |
|
23 |
|
simpl1l |
|
24 |
3 5
|
hlatjidm |
|
25 |
23 16 24
|
syl2anc |
|
26 |
22 25
|
eqtrd |
|
27 |
26
|
oveq1d |
|
28 |
|
simpl2 |
|
29 |
2 4 13 5 6
|
lhpmat |
|
30 |
11 28 29
|
syl2anc |
|
31 |
15 27 30
|
3eqtr4d |
|
32 |
|
simpl2l |
|
33 |
3 5
|
hlatjidm |
|
34 |
23 32 33
|
syl2anc |
|
35 |
19
|
oveq2d |
|
36 |
34 35
|
eqtr3d |
|
37 |
36
|
oveq1d |
|
38 |
31 37
|
eqtrd |
|
39 |
38 7
|
eqtr4di |
|