Metamath Proof Explorer


Theorem cdleme6

Description: Part of proof of Lemma E in Crawley p. 113. This expresses (r \/ f_s(r)) /\ w = u at the top of p. 114. (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙ = K
cdleme4.j ˙ = join K
cdleme4.m ˙ = meet K
cdleme4.a A = Atoms K
cdleme4.h H = LHyp K
cdleme4.u U = P ˙ Q ˙ W
cdleme4.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme4.g G = P ˙ Q ˙ F ˙ R ˙ S ˙ W
Assertion cdleme6 K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q R ˙ G ˙ W = U

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙ = K
2 cdleme4.j ˙ = join K
3 cdleme4.m ˙ = meet K
4 cdleme4.a A = Atoms K
5 cdleme4.h H = LHyp K
6 cdleme4.u U = P ˙ Q ˙ W
7 cdleme4.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme4.g G = P ˙ Q ˙ F ˙ R ˙ S ˙ W
9 1 2 3 4 5 6 7 8 cdleme5 K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q R ˙ G = P ˙ Q
10 9 oveq1d K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q R ˙ G ˙ W = P ˙ Q ˙ W
11 10 6 eqtr4di K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q R ˙ G ˙ W = U