Metamath Proof Explorer


Theorem cdleme7

Description: Part of proof of Lemma E in Crawley p. 113. G and F represent f_s(r) and f(s) respectively. W is the fiducial co-atom (hyperplane) that they call w. Here and in cdleme7ga above, we show that f_s(r) e. W (top of p. 114), meaning it is an atom and not under w, which in our notation is expressed as G e. A /\ -. G .<_ W . (Note that we do not have a symbol for their W.) Their proof provides no details of our cdleme7aa through cdleme7 , so there may be a simpler proof that we have overlooked. (Contributed by NM, 9-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙ = K
cdleme4.j ˙ = join K
cdleme4.m ˙ = meet K
cdleme4.a A = Atoms K
cdleme4.h H = LHyp K
cdleme4.u U = P ˙ Q ˙ W
cdleme4.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme4.g G = P ˙ Q ˙ F ˙ R ˙ S ˙ W
Assertion cdleme7 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q ¬ G ˙ W

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙ = K
2 cdleme4.j ˙ = join K
3 cdleme4.m ˙ = meet K
4 cdleme4.a A = Atoms K
5 cdleme4.h H = LHyp K
6 cdleme4.u U = P ˙ Q ˙ W
7 cdleme4.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme4.g G = P ˙ Q ˙ F ˙ R ˙ S ˙ W
9 eqid R ˙ S ˙ W = R ˙ S ˙ W
10 1 2 3 4 5 6 7 8 9 cdleme7d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G U
11 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q K HL
12 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q R A
13 1 2 3 4 5 6 7 8 cdleme7ga K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G A
14 1 2 4 hlatlej2 K HL R A G A G ˙ R ˙ G
15 11 12 13 14 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G ˙ R ˙ G
16 15 biantrurd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G ˙ W G ˙ R ˙ G G ˙ W
17 11 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q K Lat
18 eqid Base K = Base K
19 18 4 atbase G A G Base K
20 13 19 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G Base K
21 18 2 4 hlatjcl K HL R A G A R ˙ G Base K
22 11 12 13 21 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q R ˙ G Base K
23 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q W H
24 18 5 lhpbase W H W Base K
25 23 24 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q W Base K
26 18 1 3 latlem12 K Lat G Base K R ˙ G Base K W Base K G ˙ R ˙ G G ˙ W G ˙ R ˙ G ˙ W
27 17 20 22 25 26 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G ˙ R ˙ G G ˙ W G ˙ R ˙ G ˙ W
28 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q K HL W H
29 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q P A
30 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q Q A
31 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q R A ¬ R ˙ W
32 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q S A ¬ S ˙ W
33 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q R ˙ P ˙ Q
34 1 2 3 4 5 6 7 8 cdleme6 K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q R ˙ G ˙ W = U
35 28 29 30 31 32 33 34 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q R ˙ G ˙ W = U
36 35 breq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G ˙ R ˙ G ˙ W G ˙ U
37 27 36 bitrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G ˙ R ˙ G G ˙ W G ˙ U
38 hlatl K HL K AtLat
39 11 38 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q K AtLat
40 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q P A ¬ P ˙ W
41 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q P Q
42 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
43 28 40 30 41 42 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q U A
44 1 4 atcmp K AtLat G A U A G ˙ U G = U
45 39 13 43 44 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G ˙ U G = U
46 16 37 45 3bitrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q G ˙ W G = U
47 46 necon3bbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q ¬ G ˙ W G U
48 10 47 mpbird K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W P Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q ¬ G ˙ W