Metamath Proof Explorer


Theorem cdleme7b

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme7ga and cdleme7 . (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙ = K
cdleme4.j ˙ = join K
cdleme4.m ˙ = meet K
cdleme4.a A = Atoms K
cdleme4.h H = LHyp K
cdleme4.u U = P ˙ Q ˙ W
cdleme4.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme4.g G = P ˙ Q ˙ F ˙ R ˙ S ˙ W
cdleme7.v V = R ˙ S ˙ W
Assertion cdleme7b K HL W H R A ¬ R ˙ W S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q V A

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙ = K
2 cdleme4.j ˙ = join K
3 cdleme4.m ˙ = meet K
4 cdleme4.a A = Atoms K
5 cdleme4.h H = LHyp K
6 cdleme4.u U = P ˙ Q ˙ W
7 cdleme4.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme4.g G = P ˙ Q ˙ F ˙ R ˙ S ˙ W
9 cdleme7.v V = R ˙ S ˙ W
10 simp1 K HL W H R A ¬ R ˙ W S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q K HL W H
11 simp2 K HL W H R A ¬ R ˙ W S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q R A ¬ R ˙ W
12 simp31 K HL W H R A ¬ R ˙ W S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q S A
13 simp33 K HL W H R A ¬ R ˙ W S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q R ˙ P ˙ Q
14 simp32 K HL W H R A ¬ R ˙ W S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q
15 nbrne2 R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S
16 13 14 15 syl2anc K HL W H R A ¬ R ˙ W S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q R S
17 1 2 3 4 5 lhpat K HL W H R A ¬ R ˙ W S A R S R ˙ S ˙ W A
18 10 11 12 16 17 syl112anc K HL W H R A ¬ R ˙ W S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ W A
19 9 18 eqeltrid K HL W H R A ¬ R ˙ W S A ¬ S ˙ P ˙ Q R ˙ P ˙ Q V A