Metamath Proof Explorer


Theorem cdleme9a

Description: Part of proof of Lemma E in Crawley p. 113. C represents s_1, which we prove is an atom. (Contributed by NM, 10-Jun-2012)

Ref Expression
Hypotheses cdleme8.l ˙ = K
cdleme8.j ˙ = join K
cdleme8.m ˙ = meet K
cdleme8.a A = Atoms K
cdleme8.h H = LHyp K
cdleme8.4 C = P ˙ S ˙ W
Assertion cdleme9a K HL W H P A ¬ P ˙ W S A P S C A

Proof

Step Hyp Ref Expression
1 cdleme8.l ˙ = K
2 cdleme8.j ˙ = join K
3 cdleme8.m ˙ = meet K
4 cdleme8.a A = Atoms K
5 cdleme8.h H = LHyp K
6 cdleme8.4 C = P ˙ S ˙ W
7 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W S A P S C A