Metamath Proof Explorer


Theorem cdleme9tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. X and F represent t_1 and f(t) respectively. In their notation, we prove f(t) \/ t_1 = q \/ t_1. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme9t.l ˙=K
cdleme9t.j ˙=joinK
cdleme9t.m ˙=meetK
cdleme9t.a A=AtomsK
cdleme9t.h H=LHypK
cdleme9t.u U=P˙Q˙W
cdleme9t.g F=T˙U˙Q˙P˙T˙W
cdleme9t.x X=P˙T˙W
Assertion cdleme9tN KHLWHPA¬P˙WQATA¬T˙W¬T˙P˙QF˙X=Q˙X

Proof

Step Hyp Ref Expression
1 cdleme9t.l ˙=K
2 cdleme9t.j ˙=joinK
3 cdleme9t.m ˙=meetK
4 cdleme9t.a A=AtomsK
5 cdleme9t.h H=LHypK
6 cdleme9t.u U=P˙Q˙W
7 cdleme9t.g F=T˙U˙Q˙P˙T˙W
8 cdleme9t.x X=P˙T˙W
9 1 2 3 4 5 6 7 8 cdleme9 KHLWHPA¬P˙WQATA¬T˙W¬T˙P˙QF˙X=Q˙X