Metamath Proof Explorer


Theorem cdleme9tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. X and F represent t_1 and f(t) respectively. In their notation, we prove f(t) \/ t_1 = q \/ t_1. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme9t.l ˙ = K
cdleme9t.j ˙ = join K
cdleme9t.m ˙ = meet K
cdleme9t.a A = Atoms K
cdleme9t.h H = LHyp K
cdleme9t.u U = P ˙ Q ˙ W
cdleme9t.g F = T ˙ U ˙ Q ˙ P ˙ T ˙ W
cdleme9t.x X = P ˙ T ˙ W
Assertion cdleme9tN K HL W H P A ¬ P ˙ W Q A T A ¬ T ˙ W ¬ T ˙ P ˙ Q F ˙ X = Q ˙ X

Proof

Step Hyp Ref Expression
1 cdleme9t.l ˙ = K
2 cdleme9t.j ˙ = join K
3 cdleme9t.m ˙ = meet K
4 cdleme9t.a A = Atoms K
5 cdleme9t.h H = LHyp K
6 cdleme9t.u U = P ˙ Q ˙ W
7 cdleme9t.g F = T ˙ U ˙ Q ˙ P ˙ T ˙ W
8 cdleme9t.x X = P ˙ T ˙ W
9 1 2 3 4 5 6 7 8 cdleme9 K HL W H P A ¬ P ˙ W Q A T A ¬ T ˙ W ¬ T ˙ P ˙ Q F ˙ X = Q ˙ X