Metamath Proof Explorer


Theorem cdleme9taN

Description: Part of proof of Lemma E in Crawley p. 113. X represents t_1, which we prove is an atom. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme8t.l ˙ = K
cdleme8t.j ˙ = join K
cdleme8t.m ˙ = meet K
cdleme8t.a A = Atoms K
cdleme8t.h H = LHyp K
cdleme8t.x X = P ˙ T ˙ W
Assertion cdleme9taN K HL W H P A ¬ P ˙ W T A P T X A

Proof

Step Hyp Ref Expression
1 cdleme8t.l ˙ = K
2 cdleme8t.j ˙ = join K
3 cdleme8t.m ˙ = meet K
4 cdleme8t.a A = Atoms K
5 cdleme8t.h H = LHyp K
6 cdleme8t.x X = P ˙ T ˙ W
7 1 2 3 4 5 6 cdleme9a K HL W H P A ¬ P ˙ W T A P T X A