Metamath Proof Explorer


Theorem cdlemedb

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. D represents s_2. (Contributed by NM, 20-Nov-2012)

Ref Expression
Hypotheses cdlemeda.l ˙ = K
cdlemeda.j ˙ = join K
cdlemeda.m ˙ = meet K
cdlemeda.a A = Atoms K
cdlemeda.h H = LHyp K
cdlemeda.d D = R ˙ S ˙ W
cdlemedb.b B = Base K
Assertion cdlemedb K HL W H R A S A D B

Proof

Step Hyp Ref Expression
1 cdlemeda.l ˙ = K
2 cdlemeda.j ˙ = join K
3 cdlemeda.m ˙ = meet K
4 cdlemeda.a A = Atoms K
5 cdlemeda.h H = LHyp K
6 cdlemeda.d D = R ˙ S ˙ W
7 cdlemedb.b B = Base K
8 hllat K HL K Lat
9 8 ad2antrr K HL W H R A S A K Lat
10 simpll K HL W H R A S A K HL
11 simprl K HL W H R A S A R A
12 simprr K HL W H R A S A S A
13 7 2 4 hlatjcl K HL R A S A R ˙ S B
14 10 11 12 13 syl3anc K HL W H R A S A R ˙ S B
15 7 5 lhpbase W H W B
16 15 ad2antlr K HL W H R A S A W B
17 7 3 latmcl K Lat R ˙ S B W B R ˙ S ˙ W B
18 9 14 16 17 syl3anc K HL W H R A S A R ˙ S ˙ W B
19 6 18 eqeltrid K HL W H R A S A D B