Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemeda.l |
|
2 |
|
cdlemeda.j |
|
3 |
|
cdlemeda.m |
|
4 |
|
cdlemeda.a |
|
5 |
|
cdlemeda.h |
|
6 |
|
cdlemeda.d |
|
7 |
|
simp1l |
|
8 |
7
|
hllatd |
|
9 |
|
simp23l |
|
10 |
|
simp31l |
|
11 |
|
eqid |
|
12 |
11 2 4
|
hlatjcl |
|
13 |
7 9 10 12
|
syl3anc |
|
14 |
|
simp1r |
|
15 |
11 5
|
lhpbase |
|
16 |
14 15
|
syl |
|
17 |
11 1 3
|
latmle2 |
|
18 |
8 13 16 17
|
syl3anc |
|
19 |
6 18
|
eqbrtrid |
|
20 |
|
simp23r |
|
21 |
|
nbrne2 |
|
22 |
19 20 21
|
syl2anc |
|
23 |
8
|
adantr |
|
24 |
13
|
adantr |
|
25 |
16
|
adantr |
|
26 |
11 1 3
|
latmle1 |
|
27 |
23 24 25 26
|
syl3anc |
|
28 |
6 27
|
eqbrtrid |
|
29 |
|
simpr |
|
30 |
|
simp31r |
|
31 |
|
simp32 |
|
32 |
|
simp33 |
|
33 |
1 2 3 4 5 6
|
cdlemeda |
|
34 |
7 14 10 30 9 31 32 33
|
syl223anc |
|
35 |
11 4
|
atbase |
|
36 |
34 35
|
syl |
|
37 |
36
|
adantr |
|
38 |
|
simp21 |
|
39 |
|
simp22 |
|
40 |
11 2 4
|
hlatjcl |
|
41 |
7 38 39 40
|
syl3anc |
|
42 |
41
|
adantr |
|
43 |
11 1 3
|
latlem12 |
|
44 |
23 37 24 42 43
|
syl13anc |
|
45 |
28 29 44
|
mpbi2and |
|
46 |
|
hlatl |
|
47 |
7 46
|
syl |
|
48 |
|
eqid |
|
49 |
11 1 3 48 4
|
atnle |
|
50 |
47 10 41 49
|
syl3anc |
|
51 |
32 50
|
mpbid |
|
52 |
51
|
oveq2d |
|
53 |
11 4
|
atbase |
|
54 |
10 53
|
syl |
|
55 |
11 1 2 3 4
|
atmod1i1 |
|
56 |
7 9 54 41 31 55
|
syl131anc |
|
57 |
|
hlol |
|
58 |
7 57
|
syl |
|
59 |
11 4
|
atbase |
|
60 |
9 59
|
syl |
|
61 |
11 2 48
|
olj01 |
|
62 |
58 60 61
|
syl2anc |
|
63 |
52 56 62
|
3eqtr3d |
|
64 |
63
|
adantr |
|
65 |
45 64
|
breqtrd |
|
66 |
65
|
ex |
|
67 |
1 4
|
atcmp |
|
68 |
47 34 9 67
|
syl3anc |
|
69 |
66 68
|
sylibd |
|
70 |
69
|
necon3ad |
|
71 |
22 70
|
mpd |
|