Metamath Proof Explorer


Theorem cdlemednuN

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. D represents s_2. (Contributed by NM, 18-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemeda.l ˙ = K
cdlemeda.j ˙ = join K
cdlemeda.m ˙ = meet K
cdlemeda.a A = Atoms K
cdlemeda.h H = LHyp K
cdlemeda.d D = R ˙ S ˙ W
cdlemednu.u U = P ˙ Q ˙ W
Assertion cdlemednuN K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q D U

Proof

Step Hyp Ref Expression
1 cdlemeda.l ˙ = K
2 cdlemeda.j ˙ = join K
3 cdlemeda.m ˙ = meet K
4 cdlemeda.a A = Atoms K
5 cdlemeda.h H = LHyp K
6 cdlemeda.d D = R ˙ S ˙ W
7 cdlemednu.u U = P ˙ Q ˙ W
8 1 2 3 4 5 6 cdlemednpq K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q ¬ D ˙ P ˙ Q
9 simp1l K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q K HL
10 simp1r K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q W H
11 simp21 K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q P A
12 simp22 K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q Q A
13 1 2 3 4 5 7 cdlemeulpq K HL W H P A Q A U ˙ P ˙ Q
14 9 10 11 12 13 syl22anc K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q U ˙ P ˙ Q
15 breq1 D = U D ˙ P ˙ Q U ˙ P ˙ Q
16 14 15 syl5ibrcom K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q D = U D ˙ P ˙ Q
17 16 necon3bd K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q ¬ D ˙ P ˙ Q D U
18 8 17 mpd K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q D U