Metamath Proof Explorer


Theorem cdlemefr32sn2aw

Description: Show that [_ R / s ]_ N is an atom not under W when -. R .<_ ( P .\/ Q ) . (Contributed by NM, 28-Mar-2013)

Ref Expression
Hypotheses cdlemefr27.b B=BaseK
cdlemefr27.l ˙=K
cdlemefr27.j ˙=joinK
cdlemefr27.m ˙=meetK
cdlemefr27.a A=AtomsK
cdlemefr27.h H=LHypK
cdlemefr27.u U=P˙Q˙W
cdlemefr27.c C=s˙U˙Q˙P˙s˙W
cdlemefr27.n N=ifs˙P˙QIC
Assertion cdlemefr32sn2aw KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sNA¬R/sN˙W

Proof

Step Hyp Ref Expression
1 cdlemefr27.b B=BaseK
2 cdlemefr27.l ˙=K
3 cdlemefr27.j ˙=joinK
4 cdlemefr27.m ˙=meetK
5 cdlemefr27.a A=AtomsK
6 cdlemefr27.h H=LHypK
7 cdlemefr27.u U=P˙Q˙W
8 cdlemefr27.c C=s˙U˙Q˙P˙s˙W
9 cdlemefr27.n N=ifs˙P˙QIC
10 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKHLWH
11 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPA¬P˙W
12 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQA¬Q˙W
13 simp2r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRA¬R˙W
14 simp2l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPQ
15 simp3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙Q¬R˙P˙Q
16 eqid R˙U˙Q˙P˙R˙W=R˙U˙Q˙P˙R˙W
17 2 3 4 5 6 7 16 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙U˙Q˙P˙R˙WA
18 2 3 4 5 6 7 16 cdleme3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬R˙U˙Q˙P˙R˙W˙W
19 17 18 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙U˙Q˙P˙R˙WA¬R˙U˙Q˙P˙R˙W˙W
20 10 11 12 13 14 15 19 syl132anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR˙U˙Q˙P˙R˙WA¬R˙U˙Q˙P˙R˙W˙W
21 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRA
22 8 9 16 cdleme31sn2 RA¬R˙P˙QR/sN=R˙U˙Q˙P˙R˙W
23 21 15 22 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sN=R˙U˙Q˙P˙R˙W
24 23 eleq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sNAR˙U˙Q˙P˙R˙WA
25 23 breq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sN˙WR˙U˙Q˙P˙R˙W˙W
26 25 notbid KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙Q¬R/sN˙W¬R˙U˙Q˙P˙R˙W˙W
27 24 26 anbi12d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sNA¬R/sN˙WR˙U˙Q˙P˙R˙WA¬R˙U˙Q˙P˙R˙W˙W
28 20 27 mpbird KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sNA¬R/sN˙W