Metamath Proof Explorer


Theorem cdlemefr45e

Description: Explicit expansion of cdlemefr45 . TODO: use to shorten cdlemefr45 uses? TODO: FIX COMMENT. (Contributed by NM, 10-Apr-2013)

Ref Expression
Hypotheses cdlemef45.b B = Base K
cdlemef45.l ˙ = K
cdlemef45.j ˙ = join K
cdlemef45.m ˙ = meet K
cdlemef45.a A = Atoms K
cdlemef45.h H = LHyp K
cdlemef45.u U = P ˙ Q ˙ W
cdlemef45.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemef45.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
Assertion cdlemefr45e K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F R = R ˙ U ˙ Q ˙ P ˙ R ˙ W

Proof

Step Hyp Ref Expression
1 cdlemef45.b B = Base K
2 cdlemef45.l ˙ = K
3 cdlemef45.j ˙ = join K
4 cdlemef45.m ˙ = meet K
5 cdlemef45.a A = Atoms K
6 cdlemef45.h H = LHyp K
7 cdlemef45.u U = P ˙ Q ˙ W
8 cdlemef45.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemef45.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
10 1 2 3 4 5 6 7 8 9 cdlemefr45 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F R = R / t D
11 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R A
12 eqid R ˙ U ˙ Q ˙ P ˙ R ˙ W = R ˙ U ˙ Q ˙ P ˙ R ˙ W
13 8 12 cdleme31sc R A R / t D = R ˙ U ˙ Q ˙ P ˙ R ˙ W
14 11 13 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R / t D = R ˙ U ˙ Q ˙ P ˙ R ˙ W
15 10 14 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F R = R ˙ U ˙ Q ˙ P ˙ R ˙ W