Metamath Proof Explorer


Theorem cdlemefrs29bpre0

Description: TODO fix comment. (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefrs27.b B = Base K
cdlemefrs27.l ˙ = K
cdlemefrs27.j ˙ = join K
cdlemefrs27.m ˙ = meet K
cdlemefrs27.a A = Atoms K
cdlemefrs27.h H = LHyp K
cdlemefrs27.eq s = R φ ψ
cdlemefrs27.nb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q s A ¬ s ˙ W φ N B
Assertion cdlemefrs29bpre0 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W z = R / s N

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b B = Base K
2 cdlemefrs27.l ˙ = K
3 cdlemefrs27.j ˙ = join K
4 cdlemefrs27.m ˙ = meet K
5 cdlemefrs27.a A = Atoms K
6 cdlemefrs27.h H = LHyp K
7 cdlemefrs27.eq s = R φ ψ
8 cdlemefrs27.nb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q s A ¬ s ˙ W φ N B
9 df-ral s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W
10 anass s A ¬ s ˙ W φ s ˙ R ˙ W = R s A ¬ s ˙ W φ s ˙ R ˙ W = R
11 10 imbi1i s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W
12 impexp s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W
13 impexp s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W
14 11 12 13 3bitr3ri s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W
15 simpl11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ K HL W H
16 simpl2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ R A ¬ R ˙ W
17 eqid 0. K = 0. K
18 2 4 17 5 6 lhpmat K HL W H R A ¬ R ˙ W R ˙ W = 0. K
19 15 16 18 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ R ˙ W = 0. K
20 19 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = s ˙ 0. K
21 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ K HL
22 hlol K HL K OL
23 21 22 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ K OL
24 23 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ K OL
25 simprl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s A
26 1 5 atbase s A s B
27 25 26 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s B
28 1 3 17 olj01 K OL s B s ˙ 0. K = s
29 24 27 28 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ 0. K = s
30 20 29 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = s
31 30 eqeq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R s = R
32 19 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ N ˙ R ˙ W = N ˙ 0. K
33 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
34 simpl2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ P Q
35 simprr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ ¬ s ˙ W φ
36 33 34 25 35 8 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ N B
37 1 3 17 olj01 K OL N B N ˙ 0. K = N
38 24 36 37 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ N ˙ 0. K = N
39 32 38 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ N ˙ R ˙ W = N
40 39 eqeq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ z = N ˙ R ˙ W z = N
41 31 40 imbi12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s = R z = N
42 41 pm5.74da K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s A ¬ s ˙ W φ s = R z = N
43 impexp s A ¬ s ˙ W φ s = R z = N s A ¬ s ˙ W φ s = R z = N
44 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ R A
45 simp2rr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ ¬ R ˙ W
46 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ ψ
47 eleq1 s = R s A R A
48 breq1 s = R s ˙ W R ˙ W
49 48 notbid s = R ¬ s ˙ W ¬ R ˙ W
50 49 7 anbi12d s = R ¬ s ˙ W φ ¬ R ˙ W ψ
51 47 50 anbi12d s = R s A ¬ s ˙ W φ R A ¬ R ˙ W ψ
52 51 biimprcd R A ¬ R ˙ W ψ s = R s A ¬ s ˙ W φ
53 44 45 46 52 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s = R s A ¬ s ˙ W φ
54 53 pm4.71rd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s = R s A ¬ s ˙ W φ s = R
55 54 imbi1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s = R z = N s A ¬ s ˙ W φ s = R z = N
56 eqcom z = N N = z
57 56 imbi2i s = R z = N s = R N = z
58 55 57 bitr3di K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s = R z = N s = R N = z
59 43 58 bitr3id K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s = R z = N s = R N = z
60 42 59 bitrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s = R N = z
61 14 60 syl5bb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s = R N = z
62 61 albidv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s s = R N = z
63 9 62 syl5bb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s s = R N = z
64 nfcv _ s z
65 64 csbiebg R A s s = R N = z R / s N = z
66 44 65 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s s = R N = z R / s N = z
67 eqcom R / s N = z z = R / s N
68 66 67 bitrdi K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s s = R N = z z = R / s N
69 63 68 bitrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W z = R / s N