Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefrs27.b |
|
2 |
|
cdlemefrs27.l |
|
3 |
|
cdlemefrs27.j |
|
4 |
|
cdlemefrs27.m |
|
5 |
|
cdlemefrs27.a |
|
6 |
|
cdlemefrs27.h |
|
7 |
|
cdlemefrs27.eq |
|
8 |
|
cdlemefrs27.nb |
|
9 |
|
df-ral |
|
10 |
|
anass |
|
11 |
10
|
imbi1i |
|
12 |
|
impexp |
|
13 |
|
impexp |
|
14 |
11 12 13
|
3bitr3ri |
|
15 |
|
simpl11 |
|
16 |
|
simpl2r |
|
17 |
|
eqid |
|
18 |
2 4 17 5 6
|
lhpmat |
|
19 |
15 16 18
|
syl2anc |
|
20 |
19
|
oveq2d |
|
21 |
|
simp11l |
|
22 |
|
hlol |
|
23 |
21 22
|
syl |
|
24 |
23
|
adantr |
|
25 |
|
simprl |
|
26 |
1 5
|
atbase |
|
27 |
25 26
|
syl |
|
28 |
1 3 17
|
olj01 |
|
29 |
24 27 28
|
syl2anc |
|
30 |
20 29
|
eqtrd |
|
31 |
30
|
eqeq1d |
|
32 |
19
|
oveq2d |
|
33 |
|
simpl1 |
|
34 |
|
simpl2l |
|
35 |
|
simprr |
|
36 |
33 34 25 35 8
|
syl112anc |
|
37 |
1 3 17
|
olj01 |
|
38 |
24 36 37
|
syl2anc |
|
39 |
32 38
|
eqtrd |
|
40 |
39
|
eqeq2d |
|
41 |
31 40
|
imbi12d |
|
42 |
41
|
pm5.74da |
|
43 |
|
impexp |
|
44 |
|
simp2rl |
|
45 |
|
simp2rr |
|
46 |
|
simp3 |
|
47 |
|
eleq1 |
|
48 |
|
breq1 |
|
49 |
48
|
notbid |
|
50 |
49 7
|
anbi12d |
|
51 |
47 50
|
anbi12d |
|
52 |
51
|
biimprcd |
|
53 |
44 45 46 52
|
syl12anc |
|
54 |
53
|
pm4.71rd |
|
55 |
54
|
imbi1d |
|
56 |
|
eqcom |
|
57 |
56
|
imbi2i |
|
58 |
55 57
|
bitr3di |
|
59 |
43 58
|
bitr3id |
|
60 |
42 59
|
bitrd |
|
61 |
14 60
|
syl5bb |
|
62 |
61
|
albidv |
|
63 |
9 62
|
syl5bb |
|
64 |
|
nfcv |
|
65 |
64
|
csbiebg |
|
66 |
44 65
|
syl |
|
67 |
|
eqcom |
|
68 |
66 67
|
bitrdi |
|
69 |
63 68
|
bitrd |
|