Metamath Proof Explorer


Theorem cdlemefrs29bpre1

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefrs27.b B = Base K
cdlemefrs27.l ˙ = K
cdlemefrs27.j ˙ = join K
cdlemefrs27.m ˙ = meet K
cdlemefrs27.a A = Atoms K
cdlemefrs27.h H = LHyp K
cdlemefrs27.eq s = R φ ψ
cdlemefrs27.nb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q s A ¬ s ˙ W φ N B
cdlemefrs27.rnb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ R / s N B
Assertion cdlemefrs29bpre1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ z B s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b B = Base K
2 cdlemefrs27.l ˙ = K
3 cdlemefrs27.j ˙ = join K
4 cdlemefrs27.m ˙ = meet K
5 cdlemefrs27.a A = Atoms K
6 cdlemefrs27.h H = LHyp K
7 cdlemefrs27.eq s = R φ ψ
8 cdlemefrs27.nb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q s A ¬ s ˙ W φ N B
9 cdlemefrs27.rnb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ R / s N B
10 1 2 3 4 5 6 7 8 cdlemefrs29bpre0 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W z = R / s N
11 10 rexbidv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ z B s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W z B z = R / s N
12 risset R / s N B z B z = R / s N
13 11 12 bitr4di K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ z B s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W R / s N B
14 9 13 mpbird K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ z B s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W