Metamath Proof Explorer


Theorem cdlemefrs29clN

Description: TODO: NOT USED? Show closure of the unique element in cdlemefrs29cpre1 . (Contributed by NM, 29-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefrs27.b B = Base K
cdlemefrs27.l ˙ = K
cdlemefrs27.j ˙ = join K
cdlemefrs27.m ˙ = meet K
cdlemefrs27.a A = Atoms K
cdlemefrs27.h H = LHyp K
cdlemefrs27.eq s = R φ ψ
cdlemefrs27.nb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q s A ¬ s ˙ W φ N B
cdlemefrs27.rnb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ R / s N B
cdlemefrs29cl.o O = ι z B | s A ¬ s ˙ W s ˙ R ˙ W = R z = N ˙ R ˙ W
Assertion cdlemefrs29clN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ O B

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b B = Base K
2 cdlemefrs27.l ˙ = K
3 cdlemefrs27.j ˙ = join K
4 cdlemefrs27.m ˙ = meet K
5 cdlemefrs27.a A = Atoms K
6 cdlemefrs27.h H = LHyp K
7 cdlemefrs27.eq s = R φ ψ
8 cdlemefrs27.nb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q s A ¬ s ˙ W φ N B
9 cdlemefrs27.rnb K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ R / s N B
10 cdlemefrs29cl.o O = ι z B | s A ¬ s ˙ W s ˙ R ˙ W = R z = N ˙ R ˙ W
11 simpl11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A K HL W H
12 simpl2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A R A ¬ R ˙ W
13 simpl3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ψ
14 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A s A
15 1 2 3 4 5 6 7 cdlemefrs29pre00 K HL W H R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R ¬ s ˙ W s ˙ R ˙ W = R
16 11 12 13 14 15 syl31anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R ¬ s ˙ W s ˙ R ˙ W = R
17 16 imbi1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W ¬ s ˙ W s ˙ R ˙ W = R z = N ˙ R ˙ W
18 17 ralbidva K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W s A ¬ s ˙ W s ˙ R ˙ W = R z = N ˙ R ˙ W
19 18 riotabidv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ ι z B | s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W = ι z B | s A ¬ s ˙ W s ˙ R ˙ W = R z = N ˙ R ˙ W
20 10 19 eqtr4id K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ O = ι z B | s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W
21 1 2 3 4 5 6 7 8 9 cdlemefrs29cpre1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ ∃! z B s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W
22 riotacl ∃! z B s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W ι z B | s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W B
23 21 22 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ ι z B | s A ¬ s ˙ W φ s ˙ R ˙ W = R z = N ˙ R ˙ W B
24 20 23 eqeltrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ψ O B