Metamath Proof Explorer


Theorem cdlemefrs29pre00

Description: ***START OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW*** FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat . (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefrs29.b B = Base K
cdlemefrs29.l ˙ = K
cdlemefrs29.j ˙ = join K
cdlemefrs29.m ˙ = meet K
cdlemefrs29.a A = Atoms K
cdlemefrs29.h H = LHyp K
cdlemefrs29.eq s = R φ ψ
Assertion cdlemefrs29pre00 K HL W H R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R ¬ s ˙ W s ˙ R ˙ W = R

Proof

Step Hyp Ref Expression
1 cdlemefrs29.b B = Base K
2 cdlemefrs29.l ˙ = K
3 cdlemefrs29.j ˙ = join K
4 cdlemefrs29.m ˙ = meet K
5 cdlemefrs29.a A = Atoms K
6 cdlemefrs29.h H = LHyp K
7 cdlemefrs29.eq s = R φ ψ
8 anass ¬ s ˙ W φ s ˙ R ˙ W = R ¬ s ˙ W φ s ˙ R ˙ W = R
9 simpl3 K HL W H R A ¬ R ˙ W ψ s A ψ
10 7 pm5.32ri φ s = R ψ s = R
11 10 baibr ψ s = R φ s = R
12 9 11 syl K HL W H R A ¬ R ˙ W ψ s A s = R φ s = R
13 eqid 0. K = 0. K
14 2 4 13 5 6 lhpmat K HL W H R A ¬ R ˙ W R ˙ W = 0. K
15 14 3adant3 K HL W H R A ¬ R ˙ W ψ R ˙ W = 0. K
16 15 adantr K HL W H R A ¬ R ˙ W ψ s A R ˙ W = 0. K
17 16 oveq2d K HL W H R A ¬ R ˙ W ψ s A s ˙ R ˙ W = s ˙ 0. K
18 simpl1l K HL W H R A ¬ R ˙ W ψ s A K HL
19 hlol K HL K OL
20 18 19 syl K HL W H R A ¬ R ˙ W ψ s A K OL
21 1 5 atbase s A s B
22 21 adantl K HL W H R A ¬ R ˙ W ψ s A s B
23 1 3 13 olj01 K OL s B s ˙ 0. K = s
24 20 22 23 syl2anc K HL W H R A ¬ R ˙ W ψ s A s ˙ 0. K = s
25 17 24 eqtrd K HL W H R A ¬ R ˙ W ψ s A s ˙ R ˙ W = s
26 25 eqeq1d K HL W H R A ¬ R ˙ W ψ s A s ˙ R ˙ W = R s = R
27 26 anbi2d K HL W H R A ¬ R ˙ W ψ s A φ s ˙ R ˙ W = R φ s = R
28 12 26 27 3bitr4d K HL W H R A ¬ R ˙ W ψ s A s ˙ R ˙ W = R φ s ˙ R ˙ W = R
29 28 anbi2d K HL W H R A ¬ R ˙ W ψ s A ¬ s ˙ W s ˙ R ˙ W = R ¬ s ˙ W φ s ˙ R ˙ W = R
30 8 29 bitr4id K HL W H R A ¬ R ˙ W ψ s A ¬ s ˙ W φ s ˙ R ˙ W = R ¬ s ˙ W s ˙ R ˙ W = R