Metamath Proof Explorer


Theorem cdlemefs29pre00N

Description: FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat . (Contributed by NM, 27-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefs29.b B = Base K
cdlemefs29.l ˙ = K
cdlemefs29.j ˙ = join K
cdlemefs29.m ˙ = meet K
cdlemefs29.a A = Atoms K
cdlemefs29.h H = LHyp K
Assertion cdlemefs29pre00N K HL W H R A ¬ R ˙ W R ˙ P ˙ Q s A ¬ s ˙ W s ˙ P ˙ Q s ˙ R ˙ W = R ¬ s ˙ W s ˙ R ˙ W = R

Proof

Step Hyp Ref Expression
1 cdlemefs29.b B = Base K
2 cdlemefs29.l ˙ = K
3 cdlemefs29.j ˙ = join K
4 cdlemefs29.m ˙ = meet K
5 cdlemefs29.a A = Atoms K
6 cdlemefs29.h H = LHyp K
7 breq1 s = R s ˙ P ˙ Q R ˙ P ˙ Q
8 1 2 3 4 5 6 7 cdlemefrs29pre00 K HL W H R A ¬ R ˙ W R ˙ P ˙ Q s A ¬ s ˙ W s ˙ P ˙ Q s ˙ R ˙ W = R ¬ s ˙ W s ˙ R ˙ W = R