Metamath Proof Explorer


Theorem cdlemeg46rgv

Description: TODO FIX COMMENT r <_ g(s) \/ v_1 p. 116 3rd line. (Contributed by NM, 3-Apr-2013)

Ref Expression
Hypotheses cdlemef46g.b B = Base K
cdlemef46g.l ˙ = K
cdlemef46g.j ˙ = join K
cdlemef46g.m ˙ = meet K
cdlemef46g.a A = Atoms K
cdlemef46g.h H = LHyp K
cdlemef46g.u U = P ˙ Q ˙ W
cdlemef46g.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs46g.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef46g.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
cdlemef46.v V = Q ˙ P ˙ W
cdlemef46.n N = v ˙ V ˙ P ˙ Q ˙ v ˙ W
cdlemefs46.o O = Q ˙ P ˙ N ˙ u ˙ v ˙ W
cdlemef46.g G = a B if Q P ¬ a ˙ W ι c B | u A ¬ u ˙ W u ˙ a ˙ W = a c = if u ˙ Q ˙ P ι b B | v A ¬ v ˙ W ¬ v ˙ Q ˙ P b = O u / v N ˙ a ˙ W a
cdlemeg46.y Y = R ˙ G S ˙ W
cdlemeg46.x X = F R ˙ S ˙ W
Assertion cdlemeg46rgv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R ˙ G S ˙ X

Proof

Step Hyp Ref Expression
1 cdlemef46g.b B = Base K
2 cdlemef46g.l ˙ = K
3 cdlemef46g.j ˙ = join K
4 cdlemef46g.m ˙ = meet K
5 cdlemef46g.a A = Atoms K
6 cdlemef46g.h H = LHyp K
7 cdlemef46g.u U = P ˙ Q ˙ W
8 cdlemef46g.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs46g.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef46g.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 cdlemef46.v V = Q ˙ P ˙ W
12 cdlemef46.n N = v ˙ V ˙ P ˙ Q ˙ v ˙ W
13 cdlemefs46.o O = Q ˙ P ˙ N ˙ u ˙ v ˙ W
14 cdlemef46.g G = a B if Q P ¬ a ˙ W ι c B | u A ¬ u ˙ W u ˙ a ˙ W = a c = if u ˙ Q ˙ P ι b B | v A ¬ v ˙ W ¬ v ˙ Q ˙ P b = O u / v N ˙ a ˙ W a
15 cdlemeg46.y Y = R ˙ G S ˙ W
16 cdlemeg46.x X = F R ˙ S ˙ W
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 cdlemeg46vrg K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q X ˙ R ˙ G S
18 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q K HL
19 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q K HL W H
20 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
21 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R A ¬ R ˙ W
22 1 2 3 4 5 6 7 8 9 10 cdleme46fvaw K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W F R A ¬ F R ˙ W
23 20 21 22 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R A ¬ F R ˙ W
24 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q S A
25 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q P Q
26 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R ˙ P ˙ Q
27 1 2 3 4 5 6 7 8 9 10 cdleme46fsvlpq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W R ˙ P ˙ Q F R ˙ P ˙ Q
28 20 25 21 26 27 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R ˙ P ˙ Q
29 simp3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q ¬ S ˙ P ˙ Q
30 nbrne2 F R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R S
31 28 29 30 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R S
32 2 3 4 5 6 16 lhpat2 K HL W H F R A ¬ F R ˙ W S A F R S X A
33 19 23 24 31 32 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q X A
34 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R A
35 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q S A ¬ S ˙ W
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46fvaw K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q G S A ¬ G S ˙ W
37 20 35 25 36 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q G S A ¬ G S ˙ W
38 37 simpld K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q G S A
39 18 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q K Lat
40 23 simpld K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R A
41 1 3 5 hlatjcl K HL F R A S A F R ˙ S B
42 18 40 24 41 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R ˙ S B
43 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q W H
44 1 6 lhpbase W H W B
45 43 44 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q W B
46 1 2 4 latmle2 K Lat F R ˙ S B W B F R ˙ S ˙ W ˙ W
47 39 42 45 46 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R ˙ S ˙ W ˙ W
48 16 47 eqbrtrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q X ˙ W
49 37 simprd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q ¬ G S ˙ W
50 nbrne2 X ˙ W ¬ G S ˙ W X G S
51 48 49 50 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q X G S
52 2 3 5 hlatexch2 K HL X A R A G S A X G S X ˙ R ˙ G S R ˙ X ˙ G S
53 18 33 34 38 51 52 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q X ˙ R ˙ G S R ˙ X ˙ G S
54 17 53 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R ˙ X ˙ G S
55 3 5 hlatjcom K HL X A G S A X ˙ G S = G S ˙ X
56 18 33 38 55 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q X ˙ G S = G S ˙ X
57 54 56 breqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R ˙ G S ˙ X