Metamath Proof Explorer


Theorem cdlemeiota

Description: A translation is uniquely determined by one of its values. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemg1c.l ˙ = K
cdlemg1c.a A = Atoms K
cdlemg1c.h H = LHyp K
cdlemg1c.t T = LTrn K W
Assertion cdlemeiota K HL W H P A ¬ P ˙ W F T F = ι f T | f P = F P

Proof

Step Hyp Ref Expression
1 cdlemg1c.l ˙ = K
2 cdlemg1c.a A = Atoms K
3 cdlemg1c.h H = LHyp K
4 cdlemg1c.t T = LTrn K W
5 eqidd K HL W H P A ¬ P ˙ W F T F P = F P
6 simp3 K HL W H P A ¬ P ˙ W F T F T
7 1 2 3 4 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
8 7 3com23 K HL W H P A ¬ P ˙ W F T F P A ¬ F P ˙ W
9 1 2 3 4 cdleme K HL W H P A ¬ P ˙ W F P A ¬ F P ˙ W ∃! f T f P = F P
10 8 9 syld3an3 K HL W H P A ¬ P ˙ W F T ∃! f T f P = F P
11 fveq1 f = F f P = F P
12 11 eqeq1d f = F f P = F P F P = F P
13 12 riota2 F T ∃! f T f P = F P F P = F P ι f T | f P = F P = F
14 6 10 13 syl2anc K HL W H P A ¬ P ˙ W F T F P = F P ι f T | f P = F P = F
15 5 14 mpbid K HL W H P A ¬ P ˙ W F T ι f T | f P = F P = F
16 15 eqcomd K HL W H P A ¬ P ˙ W F T F = ι f T | f P = F P