Metamath Proof Explorer


Theorem cdlemesner

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdlemesner.l ˙ = K
cdlemesner.j ˙ = join K
cdlemesner.a A = Atoms K
cdlemesner.h H = LHyp K
Assertion cdlemesner K HL R A S A R ˙ P ˙ Q ¬ S ˙ P ˙ Q S R

Proof

Step Hyp Ref Expression
1 cdlemesner.l ˙ = K
2 cdlemesner.j ˙ = join K
3 cdlemesner.a A = Atoms K
4 cdlemesner.h H = LHyp K
5 nbrne2 R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S
6 5 3ad2ant3 K HL R A S A R ˙ P ˙ Q ¬ S ˙ P ˙ Q R S
7 6 necomd K HL R A S A R ˙ P ˙ Q ¬ S ˙ P ˙ Q S R