Metamath Proof Explorer


Theorem cdlemftr0

Description: Special case of cdlemf showing existence of a non-identity translation. (Contributed by NM, 1-Aug-2013)

Ref Expression
Hypotheses cdlemftr0.b B = Base K
cdlemftr0.h H = LHyp K
cdlemftr0.t T = LTrn K W
Assertion cdlemftr0 K HL W H f T f I B

Proof

Step Hyp Ref Expression
1 cdlemftr0.b B = Base K
2 cdlemftr0.h H = LHyp K
3 cdlemftr0.t T = LTrn K W
4 eqid trL K W = trL K W
5 1 2 3 4 cdlemftr1 K HL W H f T f I B trL K W f I
6 simpl f I B trL K W f I f I B
7 6 reximi f T f I B trL K W f I f T f I B
8 5 7 syl K HL W H f T f I B