Metamath Proof Explorer


Theorem cdlemftr0

Description: Special case of cdlemf showing existence of a non-identity translation. (Contributed by NM, 1-Aug-2013)

Ref Expression
Hypotheses cdlemftr0.b B=BaseK
cdlemftr0.h H=LHypK
cdlemftr0.t T=LTrnKW
Assertion cdlemftr0 KHLWHfTfIB

Proof

Step Hyp Ref Expression
1 cdlemftr0.b B=BaseK
2 cdlemftr0.h H=LHypK
3 cdlemftr0.t T=LTrnKW
4 eqid trLKW=trLKW
5 1 2 3 4 cdlemftr1 KHLWHfTfIBtrLKWfI
6 simpl fIBtrLKWfIfIB
7 6 reximi fTfIBtrLKWfIfTfIB
8 5 7 syl KHLWHfTfIB