Metamath Proof Explorer


Theorem cdlemftr1

Description: Part of proof of Lemma G of Crawley p. 116, sixth line of third paragraph on p. 117: there is "a translation h, different from the identity, such that tr h =/= tr f." (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemftr.b B = Base K
cdlemftr.h H = LHyp K
cdlemftr.t T = LTrn K W
cdlemftr.r R = trL K W
Assertion cdlemftr1 K HL W H f T f I B R f X

Proof

Step Hyp Ref Expression
1 cdlemftr.b B = Base K
2 cdlemftr.h H = LHyp K
3 cdlemftr.t T = LTrn K W
4 cdlemftr.r R = trL K W
5 1 2 3 4 cdlemftr2 K HL W H f T f I B R f X R f X
6 3simpa f I B R f X R f X f I B R f X
7 6 reximi f T f I B R f X R f X f T f I B R f X
8 5 7 syl K HL W H f T f I B R f X