Metamath Proof Explorer


Theorem cdlemftr2

Description: Special case of cdlemf showing existence of non-identity translation with trace different from any 2 given lattice elements. (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemftr.b B=BaseK
cdlemftr.h H=LHypK
cdlemftr.t T=LTrnKW
cdlemftr.r R=trLKW
Assertion cdlemftr2 KHLWHfTfIBRfXRfY

Proof

Step Hyp Ref Expression
1 cdlemftr.b B=BaseK
2 cdlemftr.h H=LHypK
3 cdlemftr.t T=LTrnKW
4 cdlemftr.r R=trLKW
5 1 2 3 4 cdlemftr3 KHLWHfTfIBRfXRfYRfY
6 simpl fIBRfXRfYRfYfIB
7 simpr1 fIBRfXRfYRfYRfX
8 simpr2 fIBRfXRfYRfYRfY
9 6 7 8 3jca fIBRfXRfYRfYfIBRfXRfY
10 9 reximi fTfIBRfXRfYRfYfTfIBRfXRfY
11 5 10 syl KHLWHfTfIBRfXRfY