Metamath Proof Explorer


Theorem cdlemg10bALTN

Description: TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? TODO: Compare this proof to cdlemg2m and pick best, if moved to ltrn* area. (Contributed by NM, 4-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
Assertion cdlemg10bALTN K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ F Q ˙ W = P ˙ Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 simp11 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W K HL
8 simp12 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W W H
9 7 8 jca K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W K HL W H
10 3simpc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P A ¬ P ˙ W Q A ¬ Q ˙ W
11 simp13 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F T
12 eqid P ˙ Q ˙ W = P ˙ Q ˙ W
13 5 6 1 2 4 3 12 cdlemg2k K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ F Q = F P ˙ P ˙ Q ˙ W
14 9 10 11 13 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ F Q = F P ˙ P ˙ Q ˙ W
15 14 oveq1d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ F Q ˙ W = F P ˙ P ˙ Q ˙ W ˙ W
16 simp2 K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P A ¬ P ˙ W
17 1 4 5 6 ltrnel K HL W H F T P A ¬ P ˙ W F P A ¬ F P ˙ W
18 9 11 16 17 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P A ¬ F P ˙ W
19 eqid 0. K = 0. K
20 1 3 19 4 5 lhpmat K HL W H F P A ¬ F P ˙ W F P ˙ W = 0. K
21 9 18 20 syl2anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ W = 0. K
22 21 oveq1d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ W ˙ P ˙ Q ˙ W = 0. K ˙ P ˙ Q ˙ W
23 simp2l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P A
24 1 4 5 6 ltrnat K HL W H F T P A F P A
25 9 11 23 24 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P A
26 7 hllatd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W K Lat
27 simp3l K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W Q A
28 eqid Base K = Base K
29 28 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
30 7 23 27 29 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ Q Base K
31 28 5 lhpbase W H W Base K
32 8 31 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W W Base K
33 28 3 latmcl K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W Base K
34 26 30 32 33 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ Q ˙ W Base K
35 28 1 3 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
36 26 30 32 35 syl3anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ Q ˙ W ˙ W
37 28 1 2 3 4 atmod4i2 K HL F P A P ˙ Q ˙ W Base K W Base K P ˙ Q ˙ W ˙ W F P ˙ W ˙ P ˙ Q ˙ W = F P ˙ P ˙ Q ˙ W ˙ W
38 7 25 34 32 36 37 syl131anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ W ˙ P ˙ Q ˙ W = F P ˙ P ˙ Q ˙ W ˙ W
39 hlol K HL K OL
40 7 39 syl K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W K OL
41 28 2 19 olj02 K OL P ˙ Q ˙ W Base K 0. K ˙ P ˙ Q ˙ W = P ˙ Q ˙ W
42 40 34 41 syl2anc K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W 0. K ˙ P ˙ Q ˙ W = P ˙ Q ˙ W
43 22 38 42 3eqtr3d K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ P ˙ Q ˙ W ˙ W = P ˙ Q ˙ W
44 15 43 eqtrd K HL W H F T P A ¬ P ˙ W Q A ¬ Q ˙ W F P ˙ F Q ˙ W = P ˙ Q ˙ W