Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg8.l |
|
2 |
|
cdlemg8.j |
|
3 |
|
cdlemg8.m |
|
4 |
|
cdlemg8.a |
|
5 |
|
cdlemg8.h |
|
6 |
|
cdlemg8.t |
|
7 |
|
simp11 |
|
8 |
|
simp12 |
|
9 |
7 8
|
jca |
|
10 |
|
3simpc |
|
11 |
|
simp13 |
|
12 |
|
eqid |
|
13 |
5 6 1 2 4 3 12
|
cdlemg2k |
|
14 |
9 10 11 13
|
syl3anc |
|
15 |
14
|
oveq1d |
|
16 |
|
simp2 |
|
17 |
1 4 5 6
|
ltrnel |
|
18 |
9 11 16 17
|
syl3anc |
|
19 |
|
eqid |
|
20 |
1 3 19 4 5
|
lhpmat |
|
21 |
9 18 20
|
syl2anc |
|
22 |
21
|
oveq1d |
|
23 |
|
simp2l |
|
24 |
1 4 5 6
|
ltrnat |
|
25 |
9 11 23 24
|
syl3anc |
|
26 |
7
|
hllatd |
|
27 |
|
simp3l |
|
28 |
|
eqid |
|
29 |
28 2 4
|
hlatjcl |
|
30 |
7 23 27 29
|
syl3anc |
|
31 |
28 5
|
lhpbase |
|
32 |
8 31
|
syl |
|
33 |
28 3
|
latmcl |
|
34 |
26 30 32 33
|
syl3anc |
|
35 |
28 1 3
|
latmle2 |
|
36 |
26 30 32 35
|
syl3anc |
|
37 |
28 1 2 3 4
|
atmod4i2 |
|
38 |
7 25 34 32 36 37
|
syl131anc |
|
39 |
|
hlol |
|
40 |
7 39
|
syl |
|
41 |
28 2 19
|
olj02 |
|
42 |
40 34 41
|
syl2anc |
|
43 |
22 38 42
|
3eqtr3d |
|
44 |
15 43
|
eqtrd |
|