Metamath Proof Explorer


Theorem cdlemg11a

Description: TODO: FIX COMMENT. (Contributed by NM, 4-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙ = K
cdlemg8.j ˙ = join K
cdlemg8.m ˙ = meet K
cdlemg8.a A = Atoms K
cdlemg8.h H = LHyp K
cdlemg8.t T = LTrn K W
Assertion cdlemg11a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P P

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙ = K
2 cdlemg8.j ˙ = join K
3 cdlemg8.m ˙ = meet K
4 cdlemg8.a A = Atoms K
5 cdlemg8.h H = LHyp K
6 cdlemg8.t T = LTrn K W
7 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P ˙ F G Q P ˙ Q
8 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P = P F G P = P
9 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P = P K HL W H
10 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P = P P A ¬ P ˙ W Q A ¬ Q ˙ W
11 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P = P F T
12 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P = P G T
13 1 4 5 6 cdlemg6 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P = P F G Q = Q
14 9 10 11 12 8 13 syl113anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P = P F G Q = Q
15 8 14 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P = P F G P ˙ F G Q = P ˙ Q
16 15 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P = P F G P ˙ F G Q = P ˙ Q
17 16 necon3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P ˙ F G Q P ˙ Q F G P P
18 7 17 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G P P