| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
simp1 |
|
| 9 |
|
simp2 |
|
| 10 |
|
simp31 |
|
| 11 |
|
simp32 |
|
| 12 |
|
simp21 |
|
| 13 |
|
simp22l |
|
| 14 |
|
simp33 |
|
| 15 |
1 2 3 4 5 6 7
|
cdlemg11b |
|
| 16 |
8 12 13 10 11 14 15
|
syl123anc |
|
| 17 |
|
simp1l |
|
| 18 |
|
simp1r |
|
| 19 |
|
eqid |
|
| 20 |
1 2 3 4 5 19
|
cdlemg3a |
|
| 21 |
17 18 12 13 20
|
syl211anc |
|
| 22 |
|
simp22 |
|
| 23 |
5 6 1 2 4 3 19
|
cdlemg2k |
|
| 24 |
8 12 22 10 23
|
syl121anc |
|
| 25 |
16 21 24
|
3netr3d |
|
| 26 |
1 2 3 4 5 6 19
|
cdlemg12a |
|
| 27 |
8 9 10 11 25 26
|
syl113anc |
|
| 28 |
21 24
|
oveq12d |
|
| 29 |
|
simp23 |
|
| 30 |
5 6 1 2 4 3 19
|
cdlemg2l |
|
| 31 |
8 12 22 29 10 30
|
syl122anc |
|
| 32 |
27 28 31
|
3brtr4d |
|