| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
simp11 |
|
| 9 |
|
simp22 |
|
| 10 |
|
simp12l |
|
| 11 |
|
eqid |
|
| 12 |
11 4
|
atbase |
|
| 13 |
10 12
|
syl |
|
| 14 |
|
simp21 |
|
| 15 |
1 4 5 6
|
ltrncoat |
|
| 16 |
8 14 9 10 15
|
syl121anc |
|
| 17 |
11 4
|
atbase |
|
| 18 |
16 17
|
syl |
|
| 19 |
11 2 5 6
|
ltrnj |
|
| 20 |
8 9 13 18 19
|
syl112anc |
|
| 21 |
|
simp1 |
|
| 22 |
|
simp23 |
|
| 23 |
|
simp3 |
|
| 24 |
1 2 3 4 5 6 7
|
cdlemg17b |
|
| 25 |
21 9 22 23 24
|
syl121anc |
|
| 26 |
25
|
fveq2d |
|
| 27 |
26
|
fveq2d |
|
| 28 |
1 2 3 4 5 6 7
|
cdlemg17jq |
|
| 29 |
27 28
|
eqtrd |
|
| 30 |
25 29
|
oveq12d |
|
| 31 |
20 30
|
eqtrd |
|
| 32 |
|
simp13l |
|
| 33 |
11 4
|
atbase |
|
| 34 |
32 33
|
syl |
|
| 35 |
1 4 5 6
|
ltrncoat |
|
| 36 |
8 14 9 32 35
|
syl121anc |
|
| 37 |
11 4
|
atbase |
|
| 38 |
36 37
|
syl |
|
| 39 |
11 2 5 6
|
ltrnj |
|
| 40 |
8 9 34 38 39
|
syl112anc |
|
| 41 |
1 2 3 4 5 6 7
|
cdlemg17bq |
|
| 42 |
41
|
fveq2d |
|
| 43 |
42
|
fveq2d |
|
| 44 |
1 2 3 4 5 6 7
|
cdlemg17j |
|
| 45 |
43 44
|
eqtrd |
|
| 46 |
41 45
|
oveq12d |
|
| 47 |
40 46
|
eqtrd |
|
| 48 |
31 47
|
oveq12d |
|
| 49 |
|
simp11l |
|
| 50 |
11 2 4
|
hlatjcl |
|
| 51 |
49 10 16 50
|
syl3anc |
|
| 52 |
11 2 4
|
hlatjcl |
|
| 53 |
49 32 36 52
|
syl3anc |
|
| 54 |
11 3 5 6
|
ltrnm |
|
| 55 |
8 9 51 53 54
|
syl112anc |
|
| 56 |
49
|
hllatd |
|
| 57 |
11 3
|
latmcom |
|
| 58 |
56 51 53 57
|
syl3anc |
|
| 59 |
48 55 58
|
3eqtr4d |
|