Metamath Proof Explorer


Theorem cdlemg17bq

Description: cdlemg17b with P and Q swapped. Antecedent F e. ( TW ) is redundant for easier use. TODO: should we have redundant antecedent for cdlemg17b also? (Contributed by NM, 13-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg17bq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G Q = P

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 1 2 3 4 5 6 7 cdlemg17pq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r
9 simp11 K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r K HL W H
10 simp12 K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r Q A ¬ Q ˙ W
11 simp13 K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r P A ¬ P ˙ W
12 simp22 K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r G T
13 simp23 K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r Q P
14 simp3 K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r
15 1 2 3 4 5 6 7 cdlemg17b K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r G Q = P
16 9 10 11 12 13 14 15 syl321anc K HL W H Q A ¬ Q ˙ W P A ¬ P ˙ W F T G T Q P G Q Q R G ˙ Q ˙ P ¬ r A ¬ r ˙ W Q ˙ r = P ˙ r G Q = P
17 8 16 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G Q = P