Metamath Proof Explorer


Theorem cdlemg18a

Description: Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg18a K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q Q ˙ F P

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp3r K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q F Q ˙ F P P ˙ Q
9 simpl1l K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P K HL
10 simpl21 K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P P A
11 simpl1 K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P K HL W H
12 simpl23 K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P F T
13 simpl22 K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P Q A
14 1 4 5 6 ltrnat K HL W H F T Q A F Q A
15 11 12 13 14 syl3anc K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P F Q A
16 1 4 5 6 ltrnat K HL W H F T P A F P A
17 11 12 10 16 syl3anc K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P F P A
18 simpl3l K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P P Q
19 4 5 6 ltrn11at K HL W H F T P A Q A P Q F P F Q
20 11 12 10 13 18 19 syl113anc K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P F P F Q
21 20 necomd K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P F Q F P
22 simpr K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P P ˙ F Q = Q ˙ F P
23 2 4 hlatexch4 K HL P A F Q A Q A F P A P Q F Q F P P ˙ F Q = Q ˙ F P P ˙ Q = F Q ˙ F P
24 9 10 15 13 17 18 21 22 23 syl323anc K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P P ˙ Q = F Q ˙ F P
25 24 eqcomd K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P F Q ˙ F P = P ˙ Q
26 25 ex K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q = Q ˙ F P F Q ˙ F P = P ˙ Q
27 26 necon3d K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q F Q ˙ F P P ˙ Q P ˙ F Q Q ˙ F P
28 8 27 mpd K HL W H P A Q A F T P Q F Q ˙ F P P ˙ Q P ˙ F Q Q ˙ F P