| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
cdlemg18b.u |
|
| 9 |
|
simp33 |
|
| 10 |
|
simp3r |
|
| 11 |
|
simp1l |
|
| 12 |
|
simp1r |
|
| 13 |
|
simp21 |
|
| 14 |
|
simp22l |
|
| 15 |
|
simp3l1 |
|
| 16 |
1 2 3 4 5 8
|
cdleme0a |
|
| 17 |
11 12 13 14 15 16
|
syl212anc |
|
| 18 |
|
simp1 |
|
| 19 |
|
simp23 |
|
| 20 |
1 4 5 6
|
ltrnat |
|
| 21 |
18 19 14 20
|
syl3anc |
|
| 22 |
1 2 4
|
hlatlej1 |
|
| 23 |
11 17 21 22
|
syl3anc |
|
| 24 |
11
|
hllatd |
|
| 25 |
|
simp21l |
|
| 26 |
|
eqid |
|
| 27 |
26 4
|
atbase |
|
| 28 |
25 27
|
syl |
|
| 29 |
26 4
|
atbase |
|
| 30 |
17 29
|
syl |
|
| 31 |
26 2 4
|
hlatjcl |
|
| 32 |
11 17 21 31
|
syl3anc |
|
| 33 |
26 1 2
|
latjle12 |
|
| 34 |
24 28 30 32 33
|
syl13anc |
|
| 35 |
10 23 34
|
mpbi2and |
|
| 36 |
1 2 3 4 5 8
|
cdleme0cp |
|
| 37 |
11 12 13 14 36
|
syl22anc |
|
| 38 |
|
simp22 |
|
| 39 |
5 6 1 2 4 3 8
|
cdlemg2kq |
|
| 40 |
18 13 38 19 39
|
syl121anc |
|
| 41 |
2 4
|
hlatjcom |
|
| 42 |
11 21 17 41
|
syl3anc |
|
| 43 |
40 42
|
eqtr2d |
|
| 44 |
35 37 43
|
3brtr3d |
|
| 45 |
1 4 5 6
|
ltrnat |
|
| 46 |
18 19 25 45
|
syl3anc |
|
| 47 |
1 2 4
|
ps-1 |
|
| 48 |
11 25 14 15 46 21 47
|
syl132anc |
|
| 49 |
44 48
|
mpbid |
|
| 50 |
2 4
|
hlatjcom |
|
| 51 |
11 46 21 50
|
syl3anc |
|
| 52 |
49 51
|
eqtr2d |
|
| 53 |
52
|
3exp |
|
| 54 |
53
|
exp4a |
|
| 55 |
54
|
3imp |
|
| 56 |
55
|
necon3ad |
|
| 57 |
9 56
|
mpd |
|