Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg18b.u |
|
9 |
|
simp33 |
|
10 |
|
simp3r |
|
11 |
|
simp1l |
|
12 |
|
simp1r |
|
13 |
|
simp21 |
|
14 |
|
simp22l |
|
15 |
|
simp3l1 |
|
16 |
1 2 3 4 5 8
|
cdleme0a |
|
17 |
11 12 13 14 15 16
|
syl212anc |
|
18 |
|
simp1 |
|
19 |
|
simp23 |
|
20 |
1 4 5 6
|
ltrnat |
|
21 |
18 19 14 20
|
syl3anc |
|
22 |
1 2 4
|
hlatlej1 |
|
23 |
11 17 21 22
|
syl3anc |
|
24 |
11
|
hllatd |
|
25 |
|
simp21l |
|
26 |
|
eqid |
|
27 |
26 4
|
atbase |
|
28 |
25 27
|
syl |
|
29 |
26 4
|
atbase |
|
30 |
17 29
|
syl |
|
31 |
26 2 4
|
hlatjcl |
|
32 |
11 17 21 31
|
syl3anc |
|
33 |
26 1 2
|
latjle12 |
|
34 |
24 28 30 32 33
|
syl13anc |
|
35 |
10 23 34
|
mpbi2and |
|
36 |
1 2 3 4 5 8
|
cdleme0cp |
|
37 |
11 12 13 14 36
|
syl22anc |
|
38 |
|
simp22 |
|
39 |
5 6 1 2 4 3 8
|
cdlemg2kq |
|
40 |
18 13 38 19 39
|
syl121anc |
|
41 |
2 4
|
hlatjcom |
|
42 |
11 21 17 41
|
syl3anc |
|
43 |
40 42
|
eqtr2d |
|
44 |
35 37 43
|
3brtr3d |
|
45 |
1 4 5 6
|
ltrnat |
|
46 |
18 19 25 45
|
syl3anc |
|
47 |
1 2 4
|
ps-1 |
|
48 |
11 25 14 15 46 21 47
|
syl132anc |
|
49 |
44 48
|
mpbid |
|
50 |
2 4
|
hlatjcom |
|
51 |
11 46 21 50
|
syl3anc |
|
52 |
49 51
|
eqtr2d |
|
53 |
52
|
3exp |
|
54 |
53
|
exp4a |
|
55 |
54
|
3imp |
|
56 |
55
|
necon3ad |
|
57 |
9 56
|
mpd |
|