| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
cdlemg18b.u |
|
| 9 |
|
simp1l |
|
| 10 |
|
simp21l |
|
| 11 |
|
simp1r |
|
| 12 |
|
simp21 |
|
| 13 |
|
simp22l |
|
| 14 |
|
simp31 |
|
| 15 |
1 2 3 4 5 8
|
cdleme0a |
|
| 16 |
9 11 12 13 14 15
|
syl212anc |
|
| 17 |
|
simp1 |
|
| 18 |
|
simp23 |
|
| 19 |
1 4 5 6
|
ltrnat |
|
| 20 |
17 18 13 19
|
syl3anc |
|
| 21 |
1 4 5 6
|
ltrnat |
|
| 22 |
17 18 10 21
|
syl3anc |
|
| 23 |
1 2 3 4 5 6 7 8
|
cdlemg18b |
|
| 24 |
|
simp32 |
|
| 25 |
24
|
necomd |
|
| 26 |
23 25
|
jca |
|
| 27 |
|
simp33 |
|
| 28 |
1 2 3 4 5 6 7
|
cdlemg18a |
|
| 29 |
17 10 13 18 14 27 28
|
syl132anc |
|
| 30 |
1 2 4
|
hlatlej2 |
|
| 31 |
9 10 13 30
|
syl3anc |
|
| 32 |
1 2 3 4 5 8
|
cdleme0cp |
|
| 33 |
9 11 12 13 32
|
syl22anc |
|
| 34 |
31 33
|
breqtrrd |
|
| 35 |
1 2 4
|
hlatlej2 |
|
| 36 |
9 20 22 35
|
syl3anc |
|
| 37 |
|
simp22 |
|
| 38 |
5 6 1 2 4 3 8
|
cdlemg2kq |
|
| 39 |
17 12 37 18 38
|
syl121anc |
|
| 40 |
2 4
|
hlatjcom |
|
| 41 |
9 22 20 40
|
syl3anc |
|
| 42 |
2 4
|
hlatjcom |
|
| 43 |
9 20 16 42
|
syl3anc |
|
| 44 |
39 41 43
|
3eqtr3d |
|
| 45 |
36 44
|
breqtrd |
|
| 46 |
34 45
|
jca |
|
| 47 |
1 2 3 4
|
ps-2c |
|
| 48 |
9 10 16 20 13 22 26 29 46 47
|
syl333anc |
|