| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
simp1 |
|
| 9 |
|
simp21r |
|
| 10 |
|
simp22 |
|
| 11 |
|
simp23 |
|
| 12 |
|
simp31 |
|
| 13 |
|
simp33 |
|
| 14 |
1 2 3 4 5 6 7
|
cdlemg17b |
|
| 15 |
8 9 10 11 12 13 14
|
syl123anc |
|
| 16 |
15
|
fveq2d |
|
| 17 |
16
|
oveq2d |
|
| 18 |
|
simp21l |
|
| 19 |
1 2 3 4 5 6 7
|
cdlemg17bq |
|
| 20 |
8 18 9 10 11 12 13 19
|
syl133anc |
|
| 21 |
20
|
fveq2d |
|
| 22 |
21
|
oveq2d |
|
| 23 |
17 22
|
oveq12d |
|
| 24 |
|
simp11 |
|
| 25 |
|
simp12 |
|
| 26 |
|
simp13 |
|
| 27 |
|
simp32 |
|
| 28 |
1 2 3 4 5 6
|
cdlemg11aq |
|
| 29 |
24 25 26 18 9 27 28
|
syl123anc |
|
| 30 |
21 29
|
eqnetrrd |
|
| 31 |
1 2 3 4 5 6 7
|
cdlemg17irq |
|
| 32 |
8 18 9 10 11 12 13 31
|
syl133anc |
|
| 33 |
16 32
|
oveq12d |
|
| 34 |
33 27
|
eqnetrrd |
|
| 35 |
|
eqid |
|
| 36 |
1 2 3 4 5 6 7 35
|
cdlemg18c |
|
| 37 |
24 25 26 18 10 30 34 36
|
syl133anc |
|
| 38 |
23 37
|
eqeltrd |
|