Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
simp1 |
|
9 |
|
simp21r |
|
10 |
|
simp22 |
|
11 |
|
simp23 |
|
12 |
|
simp31 |
|
13 |
|
simp33 |
|
14 |
1 2 3 4 5 6 7
|
cdlemg17b |
|
15 |
8 9 10 11 12 13 14
|
syl123anc |
|
16 |
15
|
fveq2d |
|
17 |
16
|
oveq2d |
|
18 |
|
simp21l |
|
19 |
1 2 3 4 5 6 7
|
cdlemg17bq |
|
20 |
8 18 9 10 11 12 13 19
|
syl133anc |
|
21 |
20
|
fveq2d |
|
22 |
21
|
oveq2d |
|
23 |
17 22
|
oveq12d |
|
24 |
|
simp11 |
|
25 |
|
simp12 |
|
26 |
|
simp13 |
|
27 |
|
simp32 |
|
28 |
1 2 3 4 5 6
|
cdlemg11aq |
|
29 |
24 25 26 18 9 27 28
|
syl123anc |
|
30 |
21 29
|
eqnetrrd |
|
31 |
1 2 3 4 5 6 7
|
cdlemg17irq |
|
32 |
8 18 9 10 11 12 13 31
|
syl133anc |
|
33 |
16 32
|
oveq12d |
|
34 |
33 27
|
eqnetrrd |
|
35 |
|
eqid |
|
36 |
1 2 3 4 5 6 7 35
|
cdlemg18c |
|
37 |
24 25 26 18 10 30 34 36
|
syl133anc |
|
38 |
23 37
|
eqeltrd |
|