Metamath Proof Explorer


Theorem cdlemg18d

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg18d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ Q ˙ F G Q A

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
9 simp21r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G T
10 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P Q
11 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P P
12 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r R G ˙ P ˙ Q
13 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r
14 1 2 3 4 5 6 7 cdlemg17b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = Q
15 8 9 10 11 12 13 14 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G P = Q
16 15 fveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P = F Q
17 16 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P = P ˙ F Q
18 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F T
19 1 2 3 4 5 6 7 cdlemg17bq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G Q = P
20 8 18 9 10 11 12 13 19 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r G Q = P
21 20 fveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q = F P
22 21 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q ˙ F G Q = Q ˙ F P
23 17 22 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ Q ˙ F G Q = P ˙ F Q ˙ Q ˙ F P
24 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r K HL W H
25 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P A ¬ P ˙ W
26 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r Q A ¬ Q ˙ W
27 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P ˙ F G Q P ˙ Q
28 1 2 3 4 5 6 cdlemg11aq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F G P ˙ F G Q P ˙ Q F G Q Q
29 24 25 26 18 9 27 28 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q Q
30 21 29 eqnetrrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F P Q
31 1 2 3 4 5 6 7 cdlemg17irq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q = F P
32 8 18 9 10 11 12 13 31 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G Q = F P
33 16 32 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F G P ˙ F G Q = F Q ˙ F P
34 33 27 eqnetrrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r F Q ˙ F P P ˙ Q
35 eqid P ˙ Q ˙ W = P ˙ Q ˙ W
36 1 2 3 4 5 6 7 35 cdlemg18c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P Q F P Q F Q ˙ F P P ˙ Q P ˙ F Q ˙ Q ˙ F P A
37 24 25 26 18 10 30 34 36 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F Q ˙ Q ˙ F P A
38 23 37 eqeltrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T P Q G P P R G ˙ P ˙ Q F G P ˙ F G Q P ˙ Q ¬ r A ¬ r ˙ W P ˙ r = Q ˙ r P ˙ F G P ˙ Q ˙ F G Q A