Metamath Proof Explorer


Theorem cdlemg1a

Description: Shorter expression for G . TODO: fix comment. TODO: shorten using cdleme or vice-versa? Also, if not shortened with cdleme , then it can be moved up to save repeating hypotheses. (Contributed by NM, 15-Apr-2013)

Ref Expression
Hypotheses cdlemg1.b B = Base K
cdlemg1.l ˙ = K
cdlemg1.j ˙ = join K
cdlemg1.m ˙ = meet K
cdlemg1.a A = Atoms K
cdlemg1.h H = LHyp K
cdlemg1.u U = P ˙ Q ˙ W
cdlemg1.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemg1.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemg1.g G = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
cdlemg1.t T = LTrn K W
Assertion cdlemg1a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G = ι f T | f P = Q

Proof

Step Hyp Ref Expression
1 cdlemg1.b B = Base K
2 cdlemg1.l ˙ = K
3 cdlemg1.j ˙ = join K
4 cdlemg1.m ˙ = meet K
5 cdlemg1.a A = Atoms K
6 cdlemg1.h H = LHyp K
7 cdlemg1.u U = P ˙ Q ˙ W
8 cdlemg1.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemg1.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemg1.g G = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 cdlemg1.t T = LTrn K W
12 1 2 3 4 5 6 7 8 9 10 11 cdleme50ltrn K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G T
13 simpll1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q K HL W H
14 simplr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q f T
15 12 ad2antrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q G T
16 simpll2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q P A ¬ P ˙ W
17 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q f P = Q
18 1 2 3 4 5 6 7 8 9 10 cdleme17d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G P = Q
19 18 ad2antrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q G P = Q
20 17 19 eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q f P = G P
21 2 5 6 11 cdlemd K HL W H f T G T P A ¬ P ˙ W f P = G P f = G
22 13 14 15 16 20 21 syl311anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q f = G
23 22 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q f = G
24 18 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T G P = Q
25 fveq1 f = G f P = G P
26 25 eqeq1d f = G f P = Q G P = Q
27 24 26 syl5ibrcom K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f = G f P = Q
28 23 27 impbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W f T f P = Q f = G
29 12 28 riota5 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W ι f T | f P = Q = G
30 29 eqcomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W G = ι f T | f P = Q